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Graph Neural Networks (GNNs) have achieved state-of-the-art performance in many fields and
attracted a lot of attention in the communit. Most Graph Neural Networks can be merely used when
graph-structured data is available. However, many graph structures have noise, or data itself has no
graph structures, so learning the dynamic and adaptive graph structures is necessary. In this paper,
we propose a unified structure learning framework for Graph Attention Networks. Specifically, we first
design a strategy to learn the graph structures. Then we develop a novel attention mechanism based on
structure context information of graph and node representations. Further, we devise Structure Learning
Graph Attention Networks (SLGAT) and Structure Learning Attention-based Graph Neural Networks
(SLAGNN) by using the new attention mechanism on the new graph. Finally, we demonstrate that
our approaches outperform competing methods on six standard datasets for the semi-supervised node
classification task.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Graph Neural Networks (GNNs) have shown significant perfor-
mance progress in many graph-related tasks, such as node classifi-
cation [1,2], graph classification [3,4], link prediction [5],
recommender systems [6–8]. Graph Convolution Network (GCN)
[1] is a popular and efficient Graph Neural Network model that
aggregates the neighbors’ features by a first-order spectral low-
pass-type filter. However, GCN aggregates neighbor information
equally and cannot distinguish the importance of different neigh-
bors. Graph Attention Network (GAT) [2] adopts self-attention to
resolve the issue and proposes to focus on the most relevant neigh-
bors of the target node. Similarly, Attention-based Graph Neural
Network (AGNN) [9] uses an attention mechanism over neighbors
to capture the relevance of different neighbors and weighs their
contributions accordingly. The majority of GNNs can be classified
as Message Passing Neural Networks (MPNNs) [10], including
GCN, GAT, and AGNN, which aggregate messages from one-hop
neighbors at each layer. GAT and AGNN have shown performance
improvements in semi-supervised node classification, and they
compute the attention between two connected nodes and depend
on the node representations
However, GAT and AGNN can only aggregate one-hop neigh-
bors’ information in a single layer. And they are shallow models
because stacking many layers usually suffers from the over-
smoothing problem [11–13]. This implies that receptive fields are
limited and they cannot capture long-range interactions. Here,
we first try to enlarge the receptive fields and calculate the atten-
tion between the target node and its high-order neighbors. The
results of semi-supervised node classification on three citation net-
works are shown in Fig. 1. The y-axis is the classification accuracy.
The x-axis represents the size of receptive fields. For example,
k ¼ 2 means that GAT and AGNN compute attention scores
between the target node and its neighbors within two hops. Mean-
while, they aggregate messages from two–hop neighbors at each
layer. As we can see, in most cases, the accuracy decreases when
the receptive field increases. The results show that enlarging the
receptive fields simply is useless for GAT and AGNN.

Firstly, the reason may be that the number of neighbors
increases exponentially when the receptive field increases and
the target node gathers lots of neighbors’ information and loses
its inherent representations. The models may suffer from the
over-smoothing problem. Secondly, the models are susceptible to
overfitting because the parameters for calculating attention
increase exponentially with the increase of the receptive fields.
Finally, the graph structures are noisy or incomplete due to the
inevitable error-prone data measurement or collection. To enlarge
the receptive fields and alleviate the over-smoothing and
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Fig. 1. The results of GAT and AGNN with semi-supervised node classification (GAT is out of memory on Pubmed with k ¼ 4).

J. Yuan, M. Cao, H. Cheng et al. Neurocomputing xxx (xxxx) xxx
over-fitting problem, we propose an effective structure learning
framework for Graph Attention Networks.1

In this paper, we first propose to learn the graph topology via
structure learning. And the existing GNNs can aggregate high-
order neighbors’ representations on the new graph structure,
which can help models enlarge the receptive fields. Secondly, we
present a novel strategy for attention calculation based on graph
structure context information and node representations, which is
suitable for the existing Graph Attention Networks. Thirdly, we
improve the GAT and AGNN via structure learning and attention
calculation. And we propose the Structure Learning Graph Atten-
tion Network (SLGAT) and Structure Learning Attention-based
Graph Neural Network (SLAGNN). Finally, we conduct a large num-
ber of experiments on six standard datasets with semi-supervised
node classification to demonstrate that our approaches outperform
the state-of-the-art methods.

Our methods have the following advantages. 1) The strategy of
structure learning can help models capture long-range interaction
between the target node and its high-order neighbors at each
layer. And it is a universal framework for the most existing GNNs.
2) The novel method of attention calculation can exploit both
topologies of the graph and content features of the nodes, which
is a universal strategy for the existing attention mechanisms in
GNNs. 3) The improved methods can discriminate dynamically
and adaptively which nodes are relevant to the target node for
downstream tasks.

The organization of the paper is as follows. Section 2 introduces
the problem and related works. In Section 3, we present graph
structure learning and a novel scheme of attention calculation.
And we apply them to two existing models, GAT and AGNN. Sec-
tion 4 shows the experiments and analysis. In Section 5, we pro-
pose conclusions and future works.
2. Problem and related works

2.1. Problem definition

The graph is defined as G ¼ ðV ; EÞ, where V is the set of jV j ¼ n
nodes and E is the set of edges. A 2 f0;1gn� n represents the adja-
cency matrix of G, where Aij ¼ 1 if there exists an edge between
node v i and v j, otherwise Aij ¼ 0. The features of nodes denote as

a matrix X 2 Rn� d, where n is the number of nodes and d is the
dimension of node features. The labels of nodes represent as

Y 2 f0;1gn� C with C is the number of classes. For semi-
supervised classification, m nodes (0 < m � n) have labels YL and
the labels YU of the remaining n�m nodes are missing. Based on
a graph G ¼ ðV ; EÞ with the node feature matrix X and observed
node labels YL, the problem of semi-supervised node classification
1 In the paper, Graph Attention Networks represent that Graph Neural Networks
aggregate message based on the attention mechanism, like Graph Attention Network
(GAT), Attention-based Graph Neural Network (AGNN).
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is to learn a classifier f : ðG;X;YLÞ ! YU to infer the missing labels
YU for unlabeled nodes.

2.2. Related works

For semi-supervised node classification, many researchers have
proposed graph Laplacian regularization methods based on the
assumption that nearby nodes are more likely to have the same
labels. Label Propagation [14] is one of the most popular methods.
Then ManiReg [15] and ICA [16] are proposed. These early non-
neural network methods are efficient but have limit performance.
To improve the performance, many unsupervised node embedding
approaches have been proposed to embed the nodes in latent
Euclidean space. Then supervised learning is applied on node
embeddings to train the models. There are many representative
graph embedding methods: DeepWalk [17], node2vec [18], LINE
[19], and so on. However, those methods do not use the node fea-
tures and are not end-to-end models. They cannot meet the perfor-
mance of the state-of-the-art models [9].

In recent years, Graph Neural Networks that use deep learning
to process graph-structured data have achieved state-of-the-art
performance in graph-related tasks, like semi-supervised node
classification [1,20,21]. A representative work is GCN [1] that is
an end-to-end model using approximate spectral graph convolu-
tion. Subsequently, many variants of GCN are devised, such as
SGC [22], APPNP [23], DeepGCNs [24]. However, all the spectral
methods learn filters based on the graph structure, which cannot
generate node embeddings for previously unseen data. To solve
the problem, many researchers have proposed plenty of spatial-
based convolutional methods. GraphSAGE [25] presents to sample
fixed-size local neighbors and aggregates features from the sam-
ples. MoNet [26] designs a unified spatial framework to generalize
CNN to non-Euclidean domains.

However, the methods via graph convolutional network cannot
capture the relevance between the target node and its different
neighbors. Intuitively, neighbors may not be equally important.
To distinguish the contribution of neighbors, GAT [2] first applies
a self-attention mechanism to Graph Neural Networks and aggre-
gates neighbors’ representations based on the attention coeffi-
cients. Similarly, AGNN [9] utilizes another attention strategy for
GNNs with only a single extra scaler parameter at each layer. But
GAT and AGNN only compute the attention between the target
node and its directed neighbors. To address the weakness, SPAGAN
[27] calculates the attention scores between the center node and
its high-order neighbors based on the shortest path. Recently,
DAGN [28] introduces a direct multi-hop attention-based graph
neural network that diffuses the attention scores from neighbors
to high-order neighbors. SuperGAT [29] designs a self-supervised
task to predict edges and computes the attention coefficients on
the new graph. Compared with the two models, our methods are
universal and simple. Besides, we can use the techniques in their
models to improve our models, such as LayerNorm and Feed-
Forward.
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Most of the above Graph Neural Networks can only be used
when graph-structured data is available. But the existing graph
structures are often noisy or incomplete that cannot reflect the
real graph topology, or many data have no graph structures, like
natural language, image. Therefore, many researchers have pro-
posed to learn the graph structures. AGCN [30] uses an adaptive
graph convolutional neural network that combines a task-driven
adaptive graph learning approach for each graph data with train-
ing. GLCN [31] presents to learn graph data representations by
integrating both graph learning and graph convolution in a uni-
fied network architecture. IDGL [32] utilizes an iterative method
to learn better graph structures and node embeddings. Pro-GNN
[33] designs a general framework for learning graph topology
and a robust GNN model for defending the adversarial attacks
about the perturbation of graph structures. DAGG [34] intro-
duces a data-adaptive graph generation to learn the graph struc-
tures among different traffic series. Recently, SimP-GCN [35]
proposes a node similarity preserving aggregation method to
balance information from graph structure and node features
based on structure learning. However, all the graph structure
learning methods are applied to Graph Convolutional Networks.
To the best of our knowledge, there are no methods to unify
the graph structure learning and attention-based Graph Neural
Networks.

3. Models

In this section, we first review the original GAT and AGNN and
then propose a unified framework for graph structure learning.
Further, we introduce our Structure Learning Graph Attention Net-
work (SLGAT) and Structure Learning Attention-based Graph Neu-
ral Network (SLAGNN).

3.1. GAT and AGNN

The original GAT designs a shared linear transformation for
each node via a weight matrix W and then computes attention
coefficients between the target node and its directed neighbors
based on a shared attentional mechanism a.

etij ¼ aðWtHt
i ;W

tHt
j Þ; ð1Þ

where coefficient etij indicates the importance of node j’s represen-
tation to node i in the t layer. The a is a single-layer feedforward
neural network with LeakyReLU nonlinearity function. To make
coefficients easily comparable across different nodes, GAT uses
the softmax function to normalize the attention coefficients for each
target node. The attention scores can be expressed as

at
ij ¼

expðLeakyReLUð�aT ½WtHt
i jjWtHt

j �ÞÞX
k2Ni[fig

expðLeakyReLUð�aT ½WtHt
i jjWtHt

k�Þ
; ð2Þ

where Ni represents the neighbors of node i. Further, GAT aggre-
gates the representations of neighbors via the attention coefficients
and applies a single neural network layer with a nonlinearity func-
tion to update the node representation

Htþ1
i ¼ rð

X
j2Ni[fig

at
ijW

tHt
j Þ: ð3Þ

Finally, GAT performs multi-head attention on the prediction
layer of the network to obtain the final node embeddings

Htþ1
i ¼ rð1

K

XK
k¼1

X
j2Ni[fig

atk
ij W

tkHt
j Þ: ð4Þ
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Unlike GAT, AGNN designs another way to calculate attention
coefficients with only a single scalar parameter at each layer. The
attention score from node j to node i is

Pt
ij ¼

expðbt cosðHt
i ;H

t
j ÞÞX

k2NðiÞ[fig
expðbt cosðHt

i ;H
t
kÞÞ

: ð5Þ

Then AGNN conducts message-passing based on the attention
scores to update the node representations:

Htþ1
i ¼

X
j2Ni[fig

Pt
ijH

t
j : ð6Þ

It is worth noting that AGNN uses a single-layer feedforward
neural network with ReLU for reducing the dimension of node fea-
tures at the beginning of the model.

H1 ¼ ReLUðXW0Þ: ð7Þ
3.2. A unified framework of graph structure learning

Many data are generally in non-Euclidean domains, such as
social networks, molecules, and traffic networks. These data are
usually modeled as graphs, which can capture varying neighbor-
hood vertex connectivity. The graph structure describes the rela-
tionships between nodes. For example, in the molecule graph,
the relationship may be the chemical bond between atoms. How-
ever, the existing graph structure may be noisy or incomplete
due to unavoidable errors in data measurement or acquisition. In
many cases, the data itself does not have a graph structure, but
the problem is appropriate to use the graph to handle, like point
cloud segmentation. And the fixed graph structure may not be
optimal for various downstream tasks. Therefore, it is significant
to learn an adaptive graph structure for downstream tasks whose
input data have or have not graph structures.

Most existing methods cast the graph structure learning prob-
lem as a metric learning problem based on distance or feature sim-
ilarity. The methods of metric learning in graph structure learning
generally include radial basis function kernel [30], attention mech-
anisms [31], and cosine similarity [32], which are supposed to be
learnable and have shown promising performance. However, those
metric learning methods usually contain many constraints about
graph regularization based on some prior knowledge of graphs,
such as smoothness, connectivity, sparsity, low-rank, and so on.
Although these constraints are indeed beneficial for graph struc-
ture learning, the non-differentiable of some constraints and the
addition of additional parameters make model optimization more
difficult. Besides, the methods of graph structure learning usually
only depend on the features or representations of nodes, which
ignore the global structure similarity.

To address these weaknesses, we design a novel unified frame-
work of graph structure learning based on node representations
and global structure information. The overview of graph structure
learning is shown in Fig. 2. Firstly, we can use any existing metric
learning methods that include cosine similarity, attention mecha-
nisms, and radial basis function kernel to learn graph topology,
especially when the data itself has no graph structure. The metric
similarity between node i and node j is

�Sij ¼ MðHi;HjÞ; ð8Þ
where Hi and Hj are the representations of node i and node j, respec-
tively. The representations of nodes are the features of nodes at the
beginning. M is a method of metric learning, such as attention
mechanism



Fig. 2. The unified framework of graph structure learning for the GNNs.
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�Sij ¼ expðReLUð�aT jHi � HjjÞÞXn
j¼1

expðReLUð�aT jHi � HjjÞÞ
; ð9Þ

or cosine similarity

�Sij ¼ cosðHi;HjÞ ð10Þ
Instead of using complex graph regularization constraints, we

normalize the matrix and propose to learn a sparse graph structure
via a threshold parameter k. The sparse matrix is denoted as

�Sij ¼
�Sij; if�Sij > k

0; otherwise

(
ð11Þ

The learning similarity matrix �S can be regarded as the weight
matrix of the graph, which may be dynamic at each layer and adap-
tive for downstream tasks. Further, we propose to modify the sim-
ilarity matrix by using the global topology information. We first
transform the weight matrix into an adjacency matrix, then calcu-
late the transition matrix by graph diffusion, which reflects the glo-
bal structure proximity. Two popular instantiations of the
generalized graph diffusion are Personalized PageRank (PPR) [36]
and heat kernel [37]. The closed-form solutions of PPR and heat
kernel are expressed as follows:

Sppr ¼ aðIn � ð1� aÞD1=2AD1=2Þ�1
; ð12Þ

Sheat ¼ expðtAD�1 � tÞ; ð13Þ
where a represents the teleport probability of random walk and t
denotes diffusion time. The D is diagonal matrix of node degree,
where Dij ¼

P
jAij. But the two methods are time-consuming. There-

fore, we adopt the PPMI [20] matrix to represent the global struc-
ture proximity in this paper.

The PPMI has long been regarded as a state-of-the-art model to
measure the similarity of words, which has been extensively inves-
tigated in natural language processing [38,39]. Next, we introduce
the specific calculation method of PPMI matrix. Firstly, taking each
node as the root node to conduct c randomwalks, and the length of
each walk is q. Then we can compute the number of times that two
nodes appear on the same walk path, which is denoted as fre-
quency matrix F. Based on F, we calculate the PPMI matrix P as

Pij ¼ FijX
i;j

Fij

; ð14Þ
4

Pi;� ¼

X
j

FijX
i;j

Fij

; ð15Þ

P�;j ¼

X
i

FijX
i;j

Fij

; ð16Þ

Pij ¼ maxflogð Pij

Pi;�P�;j
Þ;0g: ð17Þ

In fact, the Pij is the estimated probability that node i and j occur
on the same random walk path, which reflects the global structure
proximity of the two nodes. Similarly, we normalize the matrix and
use a threshold parameter k to obtain a sparse PPMI matrix

Pij ¼
Pij; ifPij > k

0; otherwise

�
ð18Þ

Integrating the learning similarity matrix �S and PPMI matrix P,
which reflect node representation similarity and global structure
proximity, we can obtain the graph structure S:

S ¼ �Sþ P: ð19Þ
In some cases, the data have intrinsic graph structure A. After

normalizing the adjacency matrix A, we combine the normalized

adjacency matrix Â and learned graph structure matrix to get the
final graph structure �A:

�A ¼ Sþ Â: ð20Þ
The �Sij represents the feature similarity of the two nodes, and Pij

reflects the global structure proximity of the two nodes. We nor-
malize the two matrices �S; P to learn a sparse graph structure via
a threshold parameter k. The S ¼ �Sþ P is also a sparse graph, and
Sij produces a new edge when there is no edge between node i
and node j on the original graph A, and �Sij > k or Pij > k. Of course,
we can transform the weight matrix into an adjacency matrix,
and then the most off-the-shelf Graph Neural Networks can be used
on the new graph. The learned graph structure can be dynamic at
each layer and be adaptive for the downstream tasks. Based on
the learned graph topology, the Graph Neural Networks can aggre-
gate the representations of high-order neighbors at each layer,
which enlarges the receptive fields.
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3.3. SLGAT and SLAGNN

The 3.2 section describes a universal framework of graph struc-
ture learning that is suitable for many existing Graph Neural Net-
works. Here, we apply the strategy to Graph Attention Network
(GAT) and Attention-based Graph Neural Network (AGNN) with a
novel attention mechanism. The overview of proposed models,
Structure Learning Graph Attention Network (SLGAT) and Struc-
ture Learning Attention-based Graph Neural Network (SLAGNN),
is shown in Fig. 3. Firstly, we use the proposed graph structure
learning scheme to learn a graph structure as the input graph.
Then, we design a novel attention calculation method by using
both the representations of nodes and the graph structure. Specif-
ically, we can use any existing attention mechanism to compute
the attention coefficient etij:

etij ¼ AttðHt
i ;H

t
j Þ; ð21Þ

where the coefficient etij mainly indicates the importance of node j’s
content features to node i in the t layer. In this paper, we choose the
methods as shown in Eq. 2 (SLGAT) or Eq. 5 (SLAGNN).

However, these attention mechanisms are computed mainly
based on node content features, which ignores the graph structure.
Therefore, we propose to integrate the attention coefficient etij and

the learned structure proximity Stij to obtain the final attention
coefficient at

ij:

at
ij ¼ etij þ kStij: ð22Þ

where k is a scalar parameter that adjusts the importance of node
content features and learned graph structure. The new attention
coefficients can reflect the relevance of the target node and its dif-
ferent neighbors in terms of both content feature proximity and
structural proximity. Finally, we aggregate the representations of
neighbors and update the representations of the target node

Ht
i ¼ rð

X
j2Ni[fig

at
ijW

tHt�1
j Þ: ð23Þ

The SLGAT uses multi-head attention on the final layer:

Z ¼ rð1
K

XK
k¼1

X
j2Ni[fig

ak
ijW

kHjÞ: ð24Þ

And the SLAGNN uses a single layer MLP as the final layer:

Z ¼ softmaxðWHÞ: ð25Þ
Fig. 3. The Overview of SLGAT or SLAGNN. The input data are learned graph structu
representations.

5

For semi-supervised node classification, the optimization objec-
tive is the cross-entropy loss function:

L ¼ �
X
l2YL

XC
c¼1

Yl
c ln Zl

c; ð26Þ

where YL is the set of labeled nodes and C is the number of classes.
3.4. Discussions

In this paper, we modify the original graph structure from two
aspects. One is to calculate the feature similarity of the two nodes,
�S. And another is to estimated probability that node i and j occur on
the same random walk path, PPMI, which reflects the global struc-
ture proximity of the two nodes. The two matrices represent the
feature proximity and global structure proximity, respectively,
which are the complementary for the original graph structure.
The previous graph structure learning methods do not consider
the global structure similarity.

The attention mechanism of GNNs can be regarded as a special
graph structure learning, which learns the weight matrix from an
adjacency matrix. The attention mechanism also can be used to
calculate the similarity between nodes for graph structure learn-
ing, such as Eq. 9. Therefore, it is reasonable to add the learned sim-
ilarity matrix into the attention coefficients. Based on the learned
graph structure, the improved two models can compute the atten-
tion scores between the target node and its high-order neighbors
at each layer, which helps models capture long-range interaction
between nodes and improves the performance of models. Mean-
while, the new attention coefficients combine the proximity of
content features and topology of nodes, which can represent the
interactions between nodes more accurately and distinguish the
importance of the neighbors to the target node. However, the orig-
inal Graph Attention Networks only calculate the attention scores
for direct neighbors based on node features or representations.

The SLGAT and SLAGNN contain two layers of message aggrega-
tion like GAT and AGNN. The main difference between SLGAT and
SLAGNN is the attention mechanism. The SLGAT calculates the
attention like Eq. 2 and SLAGNN uses Eq. 5 to get the attention
coefficients. And SLAGNN only uses a single parameter at each
layer to calculate attention and doesn’t use the multi-head atten-
tion mechanism. However, SLGAT needs many parameters to cal-
culate attention and uses the multi-head attention mechanism to
aggregate information.
re and features of nodes, then we stack SLGAT or SLAGNN layers to learn node
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Finally, it should be noted that we do not learn the graph struc-
ture and node representations iteratively as shown in Fig. 2. To
reduce the complexity of the model and prevent overfitting, we
only learn the graph structure at the beginning as shown in
Fig. 3. The similarity metric funtion like Eq. 10 used in this paper
computes similarity scores for all pairs of nodes, which requires
Oðn2 � dxÞ time complexity. The time complexity of PPMI is
Oðncq2Þ. The PPMI and metric function could be calculated in par-
allel and only need to be calculated once in our models. And the
time complexity of GAT and AGNN is Oðndxdh þ jEjdhÞ, where dx

and dh are the dimensions of features and hidden layer, respec-
tively. The time complexity of our models is
Oðn2dx þ ncq2 þ ndxdh þ jEjdhÞ.
2 https://github.com/rusty1s/pytorch_geometric
3 https://github.com/hugochan/IDGL
4 https://github.com/ChandlerBang/SimP-GCN
4. Experiments

In this section, we present the results of semi-supervised node
classification on six standard datasets for verifying the perfor-
mance of SLGAT and SLAGNN. We first introduce the datasets,
comparative baselines, and experimental setup. And we show the
experimental results of our models and the state-of-the-art baseli-
nes under various experimental settings. Further, we give the abla-
tion study and discuss the advantages and limitations of the
proposed methods.

4.1. Datasets and baselines

Datasets. We utilize six standard datasets, including three cita-
tion networks, a co-authorship network, and two co-purchase net-
works. The citation networks include Cora, Citeseer, Pubmed [40],
where the nodes represent documents and edges are their citation
links. The features of nodes are the representations of bag-of-
words for documents. And the labels of nodes denote what field
the corresponding document belongs to. The co-authorship net-
work is Coauthor CS [41], in which nodes are authors and edges
represent the authors co-authored a paper. Node features are the
keywords for authors’ papers and each node has a label denoting
the most active research field. The Amazon Computers and Ama-
zon Photo [41] are co-purchase networks where nodes are the
goods and edges represent the two goods frequently bought
together. The node features are the bag-of-words for product
reviews. And the label of a node is the category of product. To make
a fair comparison, we closely follow the experimental setup in
[1,41,42], which is the community convention. The detailed statis-
tics of datasets are shown in Table 1.

Baselines. We compare our methods with the following strong
baselines and state-of-the-art methods.

MLP uses the features of nodes as the representations of nodes,
which does not leverage the graph structure.

Four Graph Neural Networks based on graph convolution:
Cheb [43] designs a fast localized convolutional filter by using
the Chebyshev polynomial. GCN [1] further simplifies the Cheb
and learns node embeddings via a localized first-order approxima-
tion of spectral graph convolutions. SGC [22] removes the nonlin-
earities of GCN for reducing the complexity of the model without
compromise for the performance of the model. APPNP [23] learns
node representations via a novel propagation scheme, which is
based on personalized PageRank.

Four Attention-based Graph Neural Networks: GAT [2] aggre-
gates the messages of neighbors based on a self-attention mecha-
nism, which can specify different weights to different nodes in a
neighborhood. AGNN [9] learns a dynamic and adaptive local sum-
mary of the neighborhood based on a novel attention mechanism
that has only a single scalar parameter at each layer. SPAGAN
[27] calculates the attention scores based on the shortest path
6

between nodes. DAGN [28] is the Direct multi-hop Attention-
based Graph neural Network, which can calculate attention
between the target node and its high-order neighbors by diffusing
attention scores.

Graph structure learning method: GCN-k uses GCN on the
new graph structure (Eq. 20). IDGL [32] proposes an end-to-end
framework for jointly and iteratively learning graph structure
and node embeddings. SimP-GCN [35] proposes a framework that
can preserve node similarity and exploit graph structure.

We use the source codes of comparative models including Cheb,
GCN, SGC, APPNP, GAT, AGNN, which are from the website2. And
they are based on the PyTorch Geometric. For comparison, we also
implement the SLGAT and SLAGNN by using the PyTorch Geometric,
which will be public when the paper publishes. The source code of
IDGL is from the website3. And the code of SimP-GCN is from the
website4. We conduct 10 runs for these models following the setup
of original works. The results of SPAGAN and DAGN are from the
original works [27,28]. For the proposed models, we initialize the
parameters using initialization in [44] and train them by using Adam
optimizer [45]. We set the hyper-parameters including: weight
decay=5e� 4, length of random walk q ¼ 5, the number of random
walk for each node c ¼ 40, dropout = 0.8. We tune the following
hyper-parameters: (1) learning rate lr 2 f0:005;0:01;0:015;0:02g.
(2) dimensions of hidden layer {16, 64}. (3) k 2 f0:1;0:2;1g. (4)
epochs {200, 500, 2000}. (5) threshold
k 2 f0:1;0:2;0:3;0:4;0:5;0:6;0:7;0:8;0:9;1:0g Unless otherwise
specified, the parameters of SLGAT and SLAGNN are the same as
GAT and AGNN, respectively.

4.2. Results of semi-supervised classification

We first report the accuracies of semi-supervised node classifi-
cation on the benchmarks that are usually used to evaluate the
performance of models in the community. Results are summarized
in Table 2 and Table 3. Our models achieve the best performance
on five datasets. And IDGL achieves the best accuracy on Pubmed,
which shows the advantages of graph structure learning. Our
SLGAT and SLAGNN are always better than GAT and AGNN on all
datasets, which proves the effectiveness of our methods. For exam-
ple, Our SLAGT is 1.24%, 2.58%, 2.63%, 0.47%, 5.48%, 2.14% relative
improvement over GAT on Cora, Citeseer, Pubmed, CS, Computers,
and Photo, respectively. It should be noted that the results of DAGN
are from the original work without LayerNorm for fair comparison
with our models because this method is orthogonal to our methods
and can be used to improve our models, which is left to future
research. The results of DAGN, SPAGAN, IDGL are missing in the
Table 3 is since the results are not given in the original papers.

From the tables, we can also find that the Graph Neural Net-
works are better than MLP, proving the advantages of GNNs that
learn node representations by integrating both graph structure
and node features. Secondly, in most cases, the attention-based
methods outperform the graph convolution methods, which
proves that it is effective to assign different weights to different
neighbors during the message passing. Finally, the model with
graph structure learning is generally superior to the models based
on graph convolution and graph attention, which shows that it is
useful to learn graph structure. Our models combine the advan-
tages of graph attention mechanism and graph structure learning,
which outperform other structure learning methods in most data-
sets. The structure learning updates the graph topology and can
enlarge the receptive field for Graph Attention Networks, and the
new attention mechanism integrates the node content feature

https://github.com/rusty1s/pytorch_geometric
https://github.com/hugochan/IDGL
https://github.com/ChandlerBang/SimP-GCN


Table 1
Statistics of the six datasets.

Datasets Nodes Edges Classes Feature Training Validation Test

Cora 2708 5429 7 1433 20 per class 500 1000
Citeseer 3327 4732 6 3707 20 per class 500 1000
Pubmed 19717 44338 3 500 20 per class 500 1000

CS 18333 81894 15 6808 20 per class 30 per class Rest nodes
Computers 13381 245778 10 767 20 per class 30 per class Rest nodes

Photo 7487 119043 8 745 20 per class 30 per class Rest nodes

Table 2
Results of semi-supervised node classification in terms of accuracy.

Methods/Datasets Cora Citeseer Pubmed

MLP 59.20 ± 0.72 56.98 ± 0.99 72.86 ± 0.85
Cheb 79.34 ± 0.64 67.75 ± 0.86 78.16 ± 0.74
GCN 81.78 ± 0.82 70.93 ± 1.17 79.01 ± 0.55
SGC 79.28 ± 0.47 70.67 ± 0.08 76.88 ± 0.06

APPNP 83.14 ± 0.79 71.21 ± 0.84 80.03 ± 0.24
DAGN 83.80 ± 0.60 71.10 ± 0.50 79.80 ± 0.20

SPAGAN 83.60 ± 0.50 73.00 ± 0.40 79.60 ± 0.40

GCN-k 82.35 ± 0.92 71.59 ± 0.46 78.70 ± 0.14
SimP-GCN 82.56 ± 0.74 72.48 ± 0.63 80.94 ± 0.22

IDGL 84.30 ± 0.30 71.50 ± 0.20 82.90 ± 0.20

GAT 82.84 ± 0.59 71.43 ± 1.25 77.82 ± 0.48
SLGAT 83.87 ± 0.49 73.27 ± 0.56 79.87 ± 0.51
Improve 1.24% 2.58% 2.63%

AGNN 82.12 ± 0.60 70.99 ± 0.94 79.44 ± 0.41
SLAGNN 84.86 ± 0.59 72.19 ± 0.59 79.52 ± 0.21
Improve 3.34% 1.69% 0.10%

Table 3
Results of semi-supervised node classification in terms of accuracy.

Methods/Datasets CS Computers Photo

MLP 86.96 ± 0.60 53.87 ± 2.90 70.12 ± 2.58
Cheb 90.85 ± 0.43 72.73 ± 1.68 86.66 ± 0.40
GCN 89.45 ± 0.47 76.35 ± 1.32 89.37 ± 0.85
SGC 90.08 ± 0.52 59.34 ± 1.06 71.56 ± 0.56

APPNP 91.44 ± 0.25 73.10 ± 0.24 85.48 ± 0.20

GCN-k 90.40 ± 0.44 76.94 ± 0.29 89.46 ± 0.18
SimP-GCN 91.11 ± 0.56 78.24 ± 2.35 89.42 ± 0.57

GAT 90.98 ± 0.20 75.51 ± 0.56 88.38 ± 1.08
SLGAT 91.41 ± 0.05 79.65 ± 1.53 90.27 ± 0.31
Improve 0.47% 5.48% 2.14%

AGNN 89.01 ± 0.97 76.64 ± 3.14 88.13 ± 1.58
SLAGNN 91.74 ± 0.39 77.42 ± 0.37 89.27 ± 0.24
Improve 3.07% 1.02% 1.29%
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proximity and structure proximity, which can obtain more accu-
rate attention coefficients.

In addition to measuring the performance of models from a
quantitative perspective using accuracy, we further introduce a
data visualization technique t-SNE [46] to evaluate the effective-
ness of the models. The t-SNE is a technique that combines the
dimension reduction and visualization, which can reflect the dis-
tinguishability of node presentations in the graph. The visualiza-
tion results on Cora are shown in Fig. 4. Compared to the seven
baselines, our models have relatively better or matching discrimi-
nation boundaries, which further demonstrates the advantages of
SLAGT and SLAGNN.

4.3. Training set sizes

In the real world, the labeled data is scarce. Here, we try to
explore the performance of models with few training data. We
7

select nine comparative methods and report the mean classifica-
tion accuracy after ten runs. We set four groups of experiments
with different numbers of training nodes. For example, the training
set size is 5, which means that we randomly select five nodes from
each class as the training set. The validation set and test set keep
the same with Table 1. We set the number of layers of SGC and
APPNP as ten because they can explore a large receptive field.
The classification results of comparative evaluation experiments
on Cora are summarized in Table 4. We can see that our SLGAT
and SLAGNN are superior to all the models under different training
set sizes. The APPNP and SGC perform better than Cheb and GCN,
suggesting that enlarging the receptive fields is useful. The reason
may be that long-range interaction can provide weakly supervised
information when the training set is small. The advantages of our
models over the comparison models are more obvious when the
training set is small. Specifically, SLGAT and SLAGNN can improve
the GAT and AGNN by a margin of 29.74% and 35.48% on Cora,
respectively, when the training set size is 1, suggesting that the
proposed graph structure learning can help the models aggregate
information from high-order neighbors without stacking many
layers.
4.4. Ablation study

In this section, we first conduct the ablation study to verify the
effect of designed graph structure learning and attention mecha-
nism. Then we further analyze the influence of parameters on
the models. Firstly, we show the results of variations of models
on semi-supervised node classification in Table 5. The ’-M’ means
the models only use metric learning to update graph structure, ’-
S’ means the models only leverage global structure learning, and
’-PPR’, ’-Heat’ means that we use PPR, Heat instead of PPMI to learn
global structure. We can find that the two structure learning meth-
ods can both improve the performance of models in most cases.
And integrating these twomethods can further improve the perfor-
mance of models. The PPR and heat also can improve the perfor-
mance of models. However, the PPR and Heat needs to calculate
the inverse of the matrix, and the time complexity is higher. Some
approximate calculation methods [47,48] can be used in the future.
The results show that metric learning and global structure learning
are both necessary for structure learning.

Then we report the results of SLGAT and SLAGNN with different
threshold k (In Eq. 11 and Eq. 18). As shown in Fig. 5, the SLGAT and
SLAGNN achieve the best performance when the k ¼ 0:1 on Cora
and k ¼ 0:2 on Citeseer. It should be noted that each element of
the matrix in Eq. 11 and Eq. 18 is less than or equal to 1 after nor-
malization. And we do not use the graph structure learning when
k ¼ 1. The accuracy of models with k ¼ 1 is less than the models
with k 2 f0:1;0:2g, which demonstrates that graph structure learn-
ing enables to improve the performance of the models. We also
find that the learned graph structure is a dense matrix when
k ¼ 0, but the real-world graph structure is the sparse matrix, in
which case the performance of the models decreases. Therefore,
we need to select a reasonable threshold for learning a sparse
graph structure.



Fig. 4. The t-SNE visualization of node representations on Cora.

Table 4
Results of semi-supervised node classification with different training set sizes on Cora.

Methods/Training Nodes 1 5 10 15

MLP 27.64 ± 4.18 37.47 ± 1.96 48.22 ± 1.71 51.57 ± 1.56
Cheb 28.24 ± 4.73 53.69 ± 1.85 67.07 ± 2.50 70.17 ± 1.88
GCN 38.68 ± 3.91 64.07 ± 1.78 76.53 ± 0.65 77.02 ± 0.64
SGC 45.19 ± 2.20 70.10 ± 0.35 77.60 ± 0.00 79.02 ± 0.08

APPNP 60.04 ± 4.25 76.47 ± 0.83 80.58 ± 0.55 81.71 ± 0.88

GCN-k 56.71 ± 2.39 73.37 ± 0.52 76.92 ± 0.73 80.26 ± 0.63
SimP-GCN 39.73 ± 7.81 70.92 ± 2.83 77.07 ± 1.40 78.79 ± 1.10

GAT 48.61 ± 4.21 75.38 ± 1.10 80.05 ± 0.87 80.97 ± 0.81
SLGAT 63.07 ± 0.87 76.75 ± 0.60 80.72 ± 1.28 82.64 ± 0.32
Improve 29.74% 1.82% 0.84% 2.06%

AGNN 47.89 ± 4.21 72.46 ± 0.73 77.33 ± 1.06 79.61 ± 0.56
SLAGNN 64.88 ± 1.79 77.17 ± 0.76 80.71 ± 0.94 82.00 ± 0.68
Improve 35.48% 6.50% 4.37% 3.00%
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Further, we explore the effect of structure proximity on atten-
tion calculation. The results are shown in Fig. 6. The k ¼ 0 in Eq.
22 means that we do not utilize the structure proximity for atten-
tion calculation. The accuracy of the models with k ¼ 0 is lower
than the models with k ¼ 0:1, which verify that the proposed
attention mechanism integrating feature proximity and structure
proximity can improve the accuracy of models. We also find that
SLGAT is sensitive to different k. But the k has little influence on
the performance of SLAGNN. We suspect that the attention coef-
ficient calculated in SLAGNN is more stable with fewer parame-
8

ters comparing with SLGAT. Finally, we report the results of
SLGAT and SLAGNN with different learning rates in Fig. 7. We
can find that the different models achieve the best accuracy
under different learning rates. For example, SLGAT and SLAGNN
have the best performance when the learning rate are 0.015
and 0.02 on Cora, respectively. The results show that our models
are sensitive to the learning rate. We need to choose a reasonable
learning rate on different datasets, which is the limit of our mod-
els. Besides, our models require additional time for graph struc-
ture learning.



Table 5
Results of semi-supervised node classification in terms of accuracy.

Methods/Datasets Cora Citeseer Pubmed

GAT 82.84 ± 0.59 71.43 ± 1.25 77.82 ± 0.48
SLGAT-M 83.32 ± 0.75 72.24 ± 1.05 78.81 ± 0.37
SLGAT-S 83.51 ± 0.57 72.29 ± 0.60 79.14 ± 0.17

SLGAT-PPR 83.40 ± 0.78 72.24 ± 1.05 78.81 ± 0.37
SLGAT-Heat 83.32 ± 0.75 72.21 ± 0.95 78.89 ± 0.35

SLGAT 83.87 ± 0.49 73.27 ± 0.56 79.87 ± 0.51

AGNN 82.12 ± 0.60 70.99 ± 0.94 79.44 ± 0.41
SLAGNN-M 84.01 ± 0.51 71.36 ± 0.59 79.42 ± 0.71
SLAGNN-S 84.41 ± 0.62 71.62 ± 0.67 79.49 ± 0.45

SLAGNNT-PPR 83.66 ± 0.88 72.07 ± 0.42 79.59 ± 0.45
SLAGNN–Heat 84.06 ± 0.52 72.43 ± 0.79 79.46 ± 0.16

SLAGNN 84.86 ± 0.59 72.19 ± 0.59 79.52 ± 0.21

Fig. 5. The accuracy of SLGAT and SLA

Fig. 6. The accuracy of SLGAT an

Fig. 7. The accuracy of SLGAT and SLA

J. Yuan, M. Cao, H. Cheng et al. Neurocomputing xxx (xxxx) xxx
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5. Conclusions

We have proposed the Structure Learning Graph Attention Net-
work (SLGAT) and Structure Learning Attention-based Graph Neu-
ral Network (SLAGNN), two novel attention-based GNNs that
integrate the advantages of graph structure learning and attention
mechanism. The proposed graph structure learning is a unified
framework for most existing GNNs. Meanwhile, the framework is
suitable for graph-structured data or data without graph structure.
The novel attention mechanism computes attention scores by
using the node representations and structure proximity, which
enables to fully exploit both topologies of the graph and content
features of the nodes. We conduct a lot of experiments for semi-
supervised node classification on six standard datasets, which
demonstrates that our models can achieve better or matching
GNN with different threshold k.

d SLAGNN with different k.

GNN with different learning rate.
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performance compared with state-of-the-art baselines. The advan-
tages of our models are more obvious when the training set is
smaller, which shows the potential of our models under the few
training set. In the future, we will apply our models to the data
without graph structure and design novel attention mechanisms
for GNNs. And we will explore the robustness of our models to
structural attacks.
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