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Abstract
Path auction is held in a graph, where each edge stands for a commodity and the weight of 
this edge represents the prime cost. Bidders own some edges and make bids for their edges. 
The auctioneer needs to purchase a sequence of edges to form a path between two specific 
vertices. Path auction can be considered as a kind of combinatorial reverse auctions. Core-
selecting mechanism is a prevalent mechanism for combinatorial auction. However, pricing 
in core-selecting combinatorial auction is computationally expensive, one important reason 
is the exponential core constraints. The same is true of path auction. To solve this computa-
tion problem, we simplify the constraint set and get the optimal set with only polynomial 
constraints in this paper. Based on our constraint set, we put forward two fast core pric-
ing algorithms for the computation of bidder-Pareto-optimal core outcome. Among all the 
algorithms, our new algorithms have remarkable runtime performance. Finally, we validate 
our algorithms on real-world datasets and obtain excellent results.
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1  Introduction

Path auction has been studied extensively [13, 27, 31] since Nisan and Ronen [26] intro-
duced algorithmic mechanism design. In path auction, auctioneer tries to buy a path 
between two given vertices while the edges in the graph are owned by some bidders. 
The cost of each edge is the private information of its owner. There are many applica-
tion scenarios of path auction such as transport routing, power transmission and so on.

The classic mechanism for path auction is the well-known Vickrey–Clark–Groves 
(VCG) mechanism, where bidders pay the externalities they impose on all the other bid-
ders. VCG mechanism is the unique mechanism that can guarantee efficient allocation 
and incentive compatibility theoretically. However, VCG mechanism has some issues. 
On one hand, it may result in a low revenue to the auctioneer [2]. On the other hand, 
VCG mechanism may be manipulated by some false-name bids [30]. These issues have 
led to considerable interests in core-selecting mechanism [10, 11].

Core-selecting mechanism has been studied in the area of combinatorial auctions [7, 
24, 28, 30]. This mechanism is false-name-proof and has better revenue performance 
than VCG mechanism so that it is widely used in auctions such as spectrum auctions [8], 
procurement auctions [32] and TV advertising auctions [11]. Core-selecting mechanism 
selects the outcome from the core so that no coalition in the auction can improve upon 
the outcome. However, core-selecting mechanism has two main computation problems. 
One is the winner determination problem [28]. In general combinatorial auction, win-
ner determination is to find an efficient allocation. It can be reduced to an integer pro-
gramming problem, which is NP-hard. The other problem is the exponential core con-
straints. The result of core-selecting mechanism is a polytope, composed of numerous 
constraints. Each constraint is relevant to a coalition and the total number of the pos-
sible coalitions for a game of n players is 2n − 1 , which is exponential. Some heuristic 
algorithms were proposed to solve this problem. Core Constraint Generation algorithm 
(CCG) is a prevalent algorithm in practice [12], which only considers the most valuable 
core constraints to get the bidder-Pareto-optimal core outcome. It reduces the coalitions 
to a moderate number in expectation. However, its performance isn’t good enough for 
some online applications and it lacks a theoretical guarantee for the performance.

In path auction, winner determination problem is equivalent to the problem of com-
puting the shortest path. It is easy to compute through some existing algorithms such as 
Dijkstra algorithm. However, the number of core constraints is still exponential, which 
is the key problem to solve. In this paper, we tackle this problem by investigating the 
structural properties of core constraints to and gain excellent results theoretically and 
practically. Our contributions are stated as follows: 

1.	 We simplify the original exponential constraint set (C1) to a polynomial constraint set 
(C2) without redundant constraints.

2.	 We provide a new convenient format of constraint set (C3). Based on the three constraint 
sets, we propose three direct pricing algorithms to compute the bidder-Pareto-optimal 
core outcome.

3.	 We also put forward a novel fast algorithm called Bellman–Ford Path Auction (BFPA) 
algorithm. This algorithm only needs to run the single-source shortest path algorithm 
once and we give the proof for its correctness.

4.	 We validate our approaches on real-world datasets and obtain excellent results.
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The remainder of the paper is organized as follows. We begin by discussing related work 
of core-selecting mechanism and path auction. Section 2 describes the background of core-
selecting path mechanism. Section 3 mainly presents a proof of the equivalence (C2) ⇔ (C1) 
while Sect. 4 gives a proof of (C3) ⇔ (C2) . After the content of constraint sets, Sect. 5 dem-
onstrates four core pricing algorithms that are LPPA-C1, LPPA-C2, LPPA-C3 and CCG-VCG. 
Then in Sect. 6, we propose a new fast algorithm called BFPA algorithm and prove its correct-
ness. Section 7 presents the results of our experiments. Section 8 concludes with a summary 
of what we have accomplished and a discussion of future work.

1.1 � Related work

In combinatorial auctions, VCG mechanism is a prevalent mechanism in the field of auction 
[7, 18, 29]. However, it is rarely used in practice due to some issues, among which one is the 
potentially low revenue [2, 3]. In [2], ascending proxy auction was proposed to resolve this 
issue. This ascending auction uses a bidder-Pareto-optimal core outcome as the final payment. 
Then, the research of core-selecting mechanism was further developed by [9–12]. Comput-
ing core outcome is at least as hard as a particular winner determination problem, which is 
effectively a separation oracle for the core polytope by inputting the truncated values [11]. The 
Ellipsoid algorithm in [17] can therefore be used to solve this problem, but this is rather slow 
in practice. Various heuristic algorithms have been put forward to address this problem. In 
[12], Core Constraint Generation algorithm (CCG) was proposed as a fast algorithm to obtain 
a specific core outcome in combinatorial auction. This algorithm was then developed to be 
more practical in [4, 11, 15]. Another approach is using the recent fast cutting-plane methods 
[23] to obtain a payment result outcome with an �-approximation with high probability. In the 
specific scene of rich advertising auctions [19], an approximate algorithm was proposed to 
find a bidder-Pareto-optimal core outcome with almost linear number of calls to the welfare 
maximization oracle.

In addition to the literature mentioned above, our work is also related to the litera-
ture on path auction. The problem of designing economic mechanisms for path auction 
was first studied in [26], where VCG mechanism is applied to find the shortest path. It 
is shown that the VCG payments can be computed using |V| runs of Dijkstra algorithm in 
O(|E||V| + |V|2 log |V|) time. It is later proved that if the underlying graph is undirected, the 
VCG payments can be computed in only O(|E| + |V| log |V|) time [20]. Previous work has 
found that VCG path mechanism can be forced to make arbitrarily high overpayment in the 
worst case. In fact the result can be generalized to include all truthful path mechanisms [14, 
22]. This led to the study of frugal path mechanisms [1]. Previous work has also studied the 
VCG overpayment in the internet inter-domain routing graph [16] and large random graphs 
[21]. Then core-selecting path mechanism was designed by [31] as a frugal path mechanism. 
They put forward a new constraint set for the core polytope with 2n core constraints, where n 
is the network diameter. However, they didn’t offer an efficient algorithm. In this paper, we 
propose several deterministic polynomial pricing algorithms for path auction, which also have 
theoretical guarantee for the performance.
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2 � Preliminaries

In our model, the social network is represented by a directed weighted graph G = (V ,E) . The 
edges represent the commodities in the auction, owned by strategic agents. Each edge ei has a 
prime cost cei ∈ R+ , which is the private information of the agent who owns this edge. In this 
paper, we assume that each agent only owns one edge ei so that ei can be used to represent the 
corresponding agent. Each agent is also a bidder and makes a bid bei > 0 for his edge. The 
auctioneer aims to buy an edge set to form a walk from the source vertex v0 to the target vertex 
vn . We denote this walk by

WG(v0, vn) is a finite non-empty sequence with alternate vertices and edges, representing a 
walk from v0 to vn in the graph G. ei = (vi−1, vi) represents the edge from vi−1 to vi . There 
may be repeated vertices in the walk WG(v0, vn) . However, it is costly to buy a walk that 
passes a vertex vi repeatedly in the auction. Thus, we focus on the paths that don’t include 
repetitive vertices. We use Pw(v0, vn) to represent the path bought by the auctioneer in the 
auction, known as the winner path. As shown in Fig. 1, winner path can be expressed as

where n is the number of winners. For Pw(v0, vn) , its vertex set {v0, v1,… , vn} is represented 
by Vw(v0, vn) (abbreviated as Vw for convenience), and its edge set {e1, e2,… , en} is repre-
sented by Ew(v0, vn) (abbreviated as Ew ). Ew is just the winner set in this auction. The auc-
tioneer will pay for these edges, which generates a payment set as P = {pe1 , pe2 ,… , pen} . 
This becomes a problem of mechanism design. The winner set Ew and the payment set P 
are the outcome of path auction. We assume that the agents have quasi-linear utility func-
tion in this paper. Denote by �ei the utility of bidder ei and it is defined as follows.

 
Denote the auctioneer by 0, then

Denote by Π the utility of the system including bidders and auctioneer (i.e., social welfare) 
and we have

We use PG(v0, vn) to represent the shortest path from v0 to vn in graph G. The edge set and 
vertex set of this path are also represented by VG(v0, vn) and EG(v0, vn) respectively, and 

WG(v0, vn) = v0e1v1e2 … vn−1envn

Pw(v0, vn) = v0e1v1e2 … vn−1envn

(1)�ei =

{
pei − cei ei ∈ Ew

0 ei ∉ Ew

(2)�0 = −
∑
ei∈Ew

pei

(3)Π =
∑
ei∈Ew

�ei + �0 = −
∑
ei∈Ew

cei

Fig. 1   The winner path Pw(v0, vn)
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the cost is represented by dG(v0, vn) . According to Eq. (3), the maximum social welfare is 
−dG(v0, vn) when the shortest path is selected as the winner path.

In general auctions, bidders are considered to be rational and strategic. In order to improve 
their utilities, they will take some strategies such as misreporting costs, registering some fake 
accounts to bid, forming coalitions with other bidders and so on. Thus, the designed mecha-
nism is expected to defend against these manipulation strategies. Here are the definitions of 
three expected properties in the auction mechanism.

Definition 1  (Individual Rational) A mechanism is individual rational if and only if each 
bidder is guaranteed a non-negative utility.

In path auction, individual rational means the outcome of the mechanism needs to satisfy 
IR constraints below.

Definition 2  (Efficient) A mechanism is efficient if and only if the outcome of this mech-
anism gets the maximum social welfare.

According to Eq. (3), it means that the mechanism should select the edges on the shortest 
path as the winners.

Definition 3  (Incentive Compatible) A mechanism is incentive compatible if and only if 
reporting the true cost is each bidder’s dominant strategy in this mechanism.

Well-known VCG mechanism is the unique mechanism that satisfies these three properties 
theoretically, but it has some issues which will be discussed in Sect. 2.1.

2.1 � VCG mechanism

In VCG mechanism, the allocation rule is to choose the shortest path as the winner path, and 
for each winner ei , the VCG payment is

where G∖ei is the graph removing ei from G. In VCG mechanism, the bidder is truthful so 
that his bid price is his true value. For instance, in Fig. 2, the shortest path PG(v0, vn) is 

�ei ≥ 0 ∀ei ∈ E

(4)pei = dG�ei (v0, vn) − dG(v0, vn) + cei

Fig. 2   An example of path auction. There are 5 bidders e1, e2, e3, e4, e5 with cost 1, 1, 1, 5, 3
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v0e1v1e2v2e3v3 . The bidders e1, e2, e3 win and they obtain the payment of 4, 4, 3 respec-
tively. Therefore, the auctioneer needs to pay 11 and the final revenue is −11.

We can see that this result produces a low revenue for the auctioneer while the optimal 
revenue should be −3 . VCG mechanism causes an overpayment for the auctioneer. Besides, 
VCG mechanism is vulnerable to false-name manipulation. assuming that e1 and e2 are two 
fake accounts of one agent e6 , this agent owns an edge from v0 to v2 , with a cost of 2. If e6 
bids truthfully, he will get a payment of 5 in VCG mechanism, but if e6 uses the two fake 
accounts e1, e2 , he will get a payment of 8 totally. This could form a false-name manipula-
tion in the auction and VCG mechanism couldn’t defense this manipulation.

Due to these two issues of VCG mechanism, the study of frugal and false-name-proof 
auction mechanism was initiated. In these studies, core-selecting auction mechanism is a 
well-known combinatorial auction mechanism, which has been adopted in spectrum auc-
tion [9, 11].

2.2 � Core‑selecting path mechanism

In the case of path auction, core-selecting mechanism is described as follows.
Model the path auction as a cooperative game (N, W) and use the core as a solution 

concept. N represents all the players in this game. Note that N = G ∪ {0} where all bidders 
are included in graph G. W represents the social welfare. Denote by L a subset of N and its 
welfare is defined as

Definition 4  (Core outcome) In path auction, a core outcome is an allocation and pay-
ment profile such that the utility profile � = {�e1 ,�e2 ,… ,�en} satisfies

Given that L = N in (6), we obtain

where W(N) = −dG(v0, vn) . Besides, −dG(v0, vn) is also the maximum value of the social 
welfare, then we have the following equation.

Therefore, in core-selecting auction mechanism, the shortest path should be selected as the 
winner path (i.e. Pw(v0, vn) = PG(v0, vn) ). Assuming that L = {ei} , we obtain

This is just one IR constraint. Thus, the properties of efficient and individual rational are 
included in (6).

(5)W(L) =

{
−dL�{0}(v0, vn), 0 ∈ L

0, 0 ∉ L

(6)
∑
ei∈L

𝜋ei ≥ W(L),∀L ⊂ N

(7)
∑
ei∈N

�ei ≥ W(N)

(8)
∑
ei∈N

�ei = W(N)

(9)�ei ≥ 0
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Generally speaking, inequality (6) means that the welfare of the subset L under the pro-
file � is not lower than that under the definition of formula (5). This constraint prevents the 
agents of L from building a coalition because they couldn’t get higher profit than current 
result in this way. Core is defined as the total set of core outcomes. Next, we can define the 
core-selecting path mechanism.

Definition 5  (Core-selecting path mechanism) A path auction mechanism is core-select-
ing if 

1)	 it selects the shortest path as the winner path;
2)	 the payment set P is computed so that P ∈ core.

Core-selecting path mechanism is individual rational and efficient, and it satisfies the 
core property in the case of bidders reporting their cost truthfully [31]. The core property 
means no coalition can form a mutually beneficial renegotiation among themselves. How-
ever, core-selecting path mechanism relaxes the property of incentive compatible so that 
bidders may not report their true costs. To tackle this problem, we provide a theorem about 
the bidders’ misreporting as follows.

Theorem 1  In core-selecting path mechanism, given that the other bidders bid truthfully, 
the bidder ei’s maximum misreporting price is his VCG price.

Proof  Assuming that ei bids more than his VCG price, then the shortest path will be 
changed into another path that doesn’t include ei . Core-selecting path mechanism is effi-
cient and always chooses the shortest path so that ei would lose. Thus, VCG price is an 
upper bound for misreporting. 	�  ◻

This problem also leads to some researches of payment rules in core-selecting mecha-
nism [11]. But in this paper, we focus on the computation problem of core-selecting path 
auction. Therefore, we make the assumption that bidders report their costs truthfully 
(i.e. bei = cei ) in the following discussion.

2.3 � Core constraints

To get a core outcome of core-selecting path mechanism, the first step is to find the shortest 
path in the graph, which is simple. The next step is to generate the constraints in (6), but 
the number of constraints is too huge to compute. Fortunately, it could be simplified and 
has been simplified into (C1) in [31].

In (C1), x is a nonempty subset of Ew . G∖x is the graph removing the edges in 
x from G. dG�x(v0, vn) represents the cost of the shortest path from v0 to vn in G∖x and 
dG(v0, vn,G) −

∑
ei∈x

cei is the total cost of the edge set Ew∖x.
We assume that each edge in Ew isn’t a cut edge for the connectivity from v0 to vn . A cut 

edge means there exists no path from v0 to vn after removing this edge. Cut edge will form a 

(10)(C1) ∶
∑
ei∈x

pei ≤ dG�x(v0, vn) −

(
dG(v0, vn) −

∑
ei∈x

cei

)
,∀x ⊂ Ew
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monopoly, which is not allowed in core-selecting auction mechanism. Notice that this assump-
tion is different from that in [6]. Therefore, the path PG�x(v0, vn) may not exist in the graph 
G∖x and we won’t consider the corresponding constraint in (C1) in this case.

In Fig. 2, Ew is the edge set {e1, e2, e3} and the total cost of PG(v0, vn) is 3. According to 
(C1), we need to find the nonempty subsets of {e1, e2, e3} and them into the formula (10). 
Then we obtain 7 constraints as

For example, given that x = {e1} , the cost of the shortest path is 6 in the graph G�{e1} , 
so we have the constraint pe1 ≤ 6 − (3 − 1) = 4 . Similarly, we can get other constraints. 
Moreover, we also need to consider the following three IR constraints.

There are 10 constraints above and an outcome satisfying all the constraints will be a core 
outcome ( pe1 = 2 , pe2 = 1 , pe3 = 2 for instance). All these constraints form a problem of 
linear programming and the core is the feasible region of this linear programming. How-
ever, the number of constraints is 2n − 1 in the worst case, where n is the number of win-
ners. In order to generate the constraint relevant to x, dG�x(v0, vn) needs to be calculated 
through the shortest path algorithm. Thus, 2n − 1 constraints in (C1) indicate that the short-
est path algorithm needs to be run exponential times, which is time-consuming. To reduce 
the computational complexity, we put forward a new constraint set (C2) in this paper.

3 � Optimal constraint set ( C 2)

We denote by Pw(vi, vj) the subpath of Pw(v0, vn) from vi to vj . Similarly, the vertex set and 
edge set of this subpath are denoted by Vw(vi, vj) and Ew(vi, vj) respectively. Then constraint 
set (C2) can be defined as

In (C2), (vi, vj) is a vertex pair from Vw . G�Ew(vi, vj) is the graph removing the edges of 
Ew(vi, vj) from G, and dG�Ew(vi ,vj)

(vi, vj) is the cost of the shortest path from vi to vj in this 
graph. Note that there may exist no path from vi to vj after removing Ew(vi, vj) , in which 
case the constraint corresponding to the vertex pair (vi, vj) is not included in (C2).

In Fig. 2, the constraints of (C2) are

For example, (v0, v2) is a vertex pair and Ew is the edge set {e1, e2} . Due to 
dG�{e1,e2}(v0, v2) = 5 , we have pe1 + pe2 ≤ 5 according to (13). We can see that the core con-
straint number is much smaller than (C1). Given that |Vw| = n + 1 , the number of vertex 

(11)

⎧
⎪⎨⎪⎩

pe1 ≤ 4, pe2 ≤ 4, pe3 ≤ 3

pe1 + pe2 ≤ 5, pe2 + pe3 ≤ 7, pe1 + pe3 ≤ 7

pe1 + pe2 + pe3 ≤ 8

(12)pe1 ≥ 1, pe2 ≥ 1, pe3 ≥ 1

(13)(C2) ∶
∑
ek∈Ew

pek ≤ dG�Ew(vi,vj)
(vi, vj) ∀i, j 0 ≤ i < j ≤ n

(14)

⎧⎪⎨⎪⎩

pe3 ≤ 3

pe1 + pe2 ≤ 5

pe1 + pe2 + pe3 ≤ 8



Autonomous Agents and Multi-Agent Systems (2020) 34:18	

1 3

Page 9 of 37  18

pair is at most n(n+1)
2

 , which means we only need to run the shortest path algorithm n(n+1)
2

 
times. Therefore, the computational complexity can be reduced greatly.

Theorem 2  The two constraint sets (C1) and (C2) describe the same core.

This theorem means that (C2) is equivalent to (C1). Then, we will prove Theorem  2 
from two aspects, i.e. necessity and sufficiency. Necessity is to prove (C1) ⇒ (C2) and suf-
ficiency is to prove (C2) ⇒ (C1).

3.1 � Necessity: ( C 1) ⇒ ( C 2)

To begin with, we provide two lemmas for the shortest path.

Lemma 1  Given the source vertex and the target vertex, the cost of the shortest path is not 
longer than other walks in the graph.

Lemma 2  A subpath of a shortest path is itself a shortest path.

In Fig. 3, (vi, vj) is an arbitrary vertex pair from Vw(v0, vn) . The dotted arrow represents 
Pw(vi, vj) . The curved arrow represents the shortest path PG�Ew(vi ,vj)

(vi, vj) , whose cost is 
dG�Ew(vi ,vj)

(vi, vj) . Then we can find a path which is v0 → vi → vj → vn
1 signed by solid 

arrows in Fig.  9. This path exists after removing Ew(vi, vj) and its cost is 
dG�Ew(vi ,vj)

(vi, vj) + (dG(v0, vn) −
∑

ek∈Ew(vi ,vj)
cek ) . According to Lemma 1, we have

In (C1), let x = Ew(vi, vj) and we can obtain

Substituting (15) into (16), we get

(15)dG�Ew(vi ,vj)
(v0, vn) ≤ dG�Ew(vi ,vj)

(vi, vj) + dG(v0, vn) −
∑

ek∈Ew(vi,vj)

cek

(16)
�

ek∈Ew(vi,vj)

pek ≤ dG�Ew(vi ,vj)
(v0, vn) −

⎛⎜⎜⎝
dG(v0, vn) −

�
ek∈Ew(vi ,vj)

cek

⎞⎟⎟⎠

Fig. 3   The path PG�Ew(vi ,vj)
(v0, vn) , signed by solid arrows

1  We use vi → vj to represent the path from vi to vj in the preceding text.
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We can see that inequality (17) is just a constraint in (C2). Vertex pair (vi, vj) is arbitrary so 
that we prove (C1) ⇒ (C2).

Next, we prove the sufficiency in the following three parts. Sections 3.2 and 3.3 describe 
the prerequisite theorems and Sect. 3.4 describes the final mathematical proof using path 
division.

3.2 � Sufficiency: preparation theorems

Lemma 3  Assuming that G1 ⊂ G, if a path is the shortest path in G and it also exists in 
G1, then this path is also the shortest path in G1.

Given Lemma  3, we start by discussing the arbitrary subset x in (C1). With-
out loss of generality, x is a union of some edge sets, which can be written as 
x = Ew(vs1 , vt1 ) ∪ Ew(vs2 , vt2 ) ∪⋯ ∪ Ew(vsm , vtm ) , where 0 ≤ s1 < t1 < s2 < ⋯ < tm ≤ n . 
After removing x, the shortest path is divided into several sections. These sections rep-
resent the subpaths of the shortest path, which are Pw(v0, vs1 ),Pw(vt1 , vs2 ),… ,Pw(vtm , vn)2. Then we have that v0 ∈ Pw(v0, vs1 ) and vn ∈ Pw(vtm , vn) . Besides, these sections mutu-
ally disjoint with each other because they are divided by x. According to Lemmas 2 and 3, 
we can see that each subpath of these sections is also the shortest path in graph G∖x . We 
mainly consider these sections in the proof.

A situation is described as Fig.  4, where x = Ew(vs1 , vt1 ) ∪ Ew(vs2 , vt2 ) ∪ Ew(vs3 , vt3 ) . 
The shortest path is divided into four disjoint sections that are Pw(v0, vs1 ) , Pw(vt1 , vs2 ) , 
Pw(vt2 , vs3 ) and Pw(vt3 , vn) . Each section represents a subpath of Pw(v0, vn).

PG�x(v0, vn) is the shortest path in G∖x , abbreviated as PG∖x for convenience. In Fig. 4, 
PG∖x is signed by the red arrows. According to the definition, PG∖x can’t include any edge in 
x, but it may include some edges in some sections. Then, we provide two theorems for this 
sort of section.

(17)
∑

ek∈Ew(vi ,vj)

pek ≤ dG�Ew(vi,vj)
(vi, vj)

Fig. 4   A situation including the shortest path in graph G and G∖x . Top: The straight path from v0 to vn rep-
resents the path PG(v0, vn) , and the dotted arrows represent the removed subset x; Bottom: The path signed 
with the red arrows represents the path PG�x(v0, vn) (Color figure online)

2  Notice that Pw(v0, vs1 ) may be a subpath from v0 to v0 when s1 = 0 , and so is Pw(vtm , vn).
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Theorem 3  If a section Pw(vti , vsi+1 ) (0 < i < m) has common edges with PG∖x, there exists 
at least one common vertex va satisfying

1.	 in the path PG∖x, the edge ending at va belongs to Pw(vti , vsi+1 );

2.	 in the path PG∖x, the edge starting at va doesn’t belong to Pw(vti , vsi+1 ).

Proof  Assume that there exists no vertex meeting the requirements. Denote by vi the end-
ing vertex of one common edge. In PG∖x , the edge starting at vi must belong to Pw(vti , vsi+1 ) , 
otherwise, vi is just the vertex we are looking for. Denote by vi+1 the next vertex and 
vi+1 ∈ Pw(vti , vsi+1 ) . Similarly, the edge starting at vi+1 also belongs to Pw(vti , vsi+1 ) , so the 
next vertex vi+2 also belongs to Pw(vti , vsi+1 ) . Keep deriving and we will find that all the 
vertices after vi belong to Pw(vti , vsi+1 ) . Due to i < m , this conflicts with the factor that 
vn ∉ Pw(vti , vsi+1 ) . As a consequence, Theorem 3 is established. 	�  ◻

For the sake of convenience, we denote by A the two conditions above. In Fig. 4, va1 is a 
vertex satisfying A . Similarly, we have the following theorem.

Theorem 4  If a section Pw(vti , vsi+1 ) (0 < i < m) has common edges with PG∖x, there exists 
at least one common vertex vb satisfying

1.	 in the path PG∖x, the edge ending at vb doesn’t belong to Pw(vti , vsi+1 );

2.	 in the path PG∖x, the edge starting at vb belongs to Pw(vti , vsi+1 ).

The proof is similar to Theorem  3. Also, denote by B the two conditions above. In 
Fig. 4, the vertex vb1 satisfies B.

3.3 � Sufficiency: properties for the vertices satisfying A and B

According to Theorems  3 and 4, if a section Pw(vti , vsi+1 ) has common edges with PG∖x , 
then we can find a vertex va satisfying A and a vertex vb satisfying B . Denote by vi → vj the 
subpath from vi to vj in PG∖x . For the vertex va , we have the following proposition.

Proposition 1  In PG∖x, the subpath va → vn has no common edges with Pw(va, vsi+1 ).

Proof  Assuming that Proposition 1 is wrong. The situation can be described as Fig.  5. 
PG∖x is signed by the red arrows and the edge (vb� , va� ) is a common edge between the sub-
path va → vn and Pw(va, vsi+1 ) . We know that the shortest path from va to va′ is the straight 
path Pw(va, va� ) , which belongs to Pw(va, vsi+1 ) . However, due to that the edge starting at 

Fig. 5   A counter-example for Proposition 1
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va doesn’t belong to Pw(vti , vsi+1 ) , the subpath va → va′ is different from the shortest path 
Pw(va, va� ) . If these two paths have different costs, this will produce a contradiction accord-
ing to Lemma 2. Therefore, these two paths must have the same costs. In this case, we just 
replace the path va → va′ with Pw(va, va� ) to update the path PG∖x . With the eventual update 
of PG∖x , the proposition will become true and we use this path in our discussion. 	�  ◻

In Fig. 4, as to the vertex va1 , Proposition 1 means the subpath va1 → vn has no common 
edges with Pw(va1 , vs3 ) . On the basis of symmetry, we have a similar proposition for vertex vb.

Proposition 2  In PG∖x, the subpath v0 → vb has no common edges with Pw(vti , vb).

The proof is similar to Proposition 1. In Fig. 4, as to the vertex vb1 , Proposition 2 means the 
subpath v0 → vb1 has no common edges with Pw(vt2 , vb1 ).

3.4 � Sufficiency: path division

Based on the conclusion in Sects. 3.2 and 3.3, we could consider the traveling process of path 
PG∖x.

The path PG∖x starts at v0, v0 ∈ Pw(vt0 , vs1 ) , then it may pass some edges in the section 
Pw(vt0 , vs1 ) and leave this section after passing a vertex satisfying A , denoted by va0 . Oth-
erwise, PG∖x may not pass any edge in Pw(vt0 , vs1 ) and leave this section directly, in which 
case we let a0 = 0 . After leaving this section, path PG∖x will arrive at another section 
Pw(vti , vsi+1 ) (i > 0) , which is the first section having common edges with PG∖x after passing 
va0 . If i ≠ m , then PG∖x arrives at a vertex vb1 satisfying B . After that, it will pass some edges 
in Pw(vti , vsi+1 ) and leave Pw(vti , vsi+1 ) at a vertex va1 that satisfies A . After leaving the previous 
section, PG∖x will arrive at the next section and repeat the same process until this path reaches 
the last section Pw(vtm , vn) . Finally, PG∖x will pass a vertex vbk satisfying B and reach the target 
vertex vn through the subpath Pw(vbk , vn) , which is the shortest path. Or PG∖x may reach the 
target vertex vn directly, in which case we let bk = n.

Note that b0 = 0 and ak = n . By the traveling process, PG∖x can be divided into

For example, in Fig. 4, the path division is v0 → va0 → vb1 → va1 → vb2 → vn . The passed 
sections are Pw(v0, vs1 ),Pw(vt2 , vs3 ),Pw(vt3 , vn) . These sections are signed by section 1, 2 
and 3 in Fig. 4.

According to Lemmas 2 and 3, these subpaths are the shortest in graph G∖x . We consider a 
part of these subpaths as

The two endpoints of these subpaths are in the same section, so the shortest path between 
them in G∖x is the same as that in G. Let U =

⋃k

i=0
Ew(vbi , vai ) , and the total cost of these 

subpaths above will be 
∑

ei∈U
cei.

Then we consider the rest subpaths as

We can see that each subpath vai → vbi+1 is a subpath of the path v0 → vbi+1 and vai → vn . 
Due to Propositions 1, 2 and that vbi+1 belongs to the first section which has common edges 

vb0 → va0 → vb1 → va1 … vbk−1 → vak−1 → vbk → vak

vb0 → va0 , vb1 → va1 ,… , vbk → vak

va0 → vb1 , va1 → vb2 ,… , vak−1 → vbk
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after passing vai , we can draw a conclusion that subpath vai → vbi+1 has no common edges 
with Ew(vai , vbi+1 ) . Therefore, vai → vbi+1 still exists in the graph G�Ew(vai , vbi+1 ).

Denote by Di the cost of subpath vai → vbi+1 . (vai , vbi+1 ) is a vertex pair in constraint 
set (C2). According to Lemma  1, the constraint corresponding to this vertex pair in 
(C2) becomes

Combining k inequalities in (18), we have

According to the previous definition, we have 
∑k−1

i=0
Di = dG�x(v0, vn) −

∑
ei∈U

cei . As a 
result, (19) can be written as

We can see that x ⊂ Ew∖U because U and x both are the subsets of Ew and U ∩ x = � . 
According to the IR constraint pei − cei ≥ 0 , we can obtain the following inequality.

Substituting (20) into (21), we obtain

(18)
∑

el∈Ew(vai ,vbi+1 )

pel ≤ dG�Ew(vai ,vbi+1 )
(vai , vbi+1 ) ≤ Di,∀i ∈ [0, k − 1]

(19)
∑

ei∈Ew�U

pei ≤

k−1∑
i=0

Di

(20)
∑

ei∈Ew�U

(pei − cei ) ≤ dG�x(v0, vn) − dG(v0, vn)

(21)
∑
ei∈x

(pei − cei ) ≤
∑

ei∈Ew�U

(pei − cei )

(22)
∑
ei∈x

(pei − cei ) ≤ dG�x(v0, vn) − dG(v0, vn)

Fig. 6   A specific graph, where the number on each edge is its cost
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Inequality (22) is the same as constraint (10) in (C1), which holds for each subset x. Thus, 
the sufficiency is proved and Theorem 2 is established.

3.5 � Explanation for the optimality

On the basis of conclusion above, we know that the constraint set (C2) can produce the 
core correctly. However, (C2) may also have some redundant constraints. To verify the 
optimality of (C2), we construct a worst case as shown in Fig. 6.

Definition 6  (Redundant constraint) A constraint is redundant if the feasible domain 
does not change after removing it from the constraint set.

In Fig.  6, the length of the shortest path is n. Firstly, we consider a simple situation 
including vertices v0, v1, v2, v3 and the connected directed edges among them. If the auc-
tioneer wants to buy a path from v0 to v3 , then the winner set will be Ew = {e1, e2, e3} and 
the payment set will be P = {pe1 , pe2 , pe3} . The constraints in (C2) will be

To produce the core, we also need IR constraints pe1 ≥ 1, pe2 ≥ 1, pe3 ≥ 1 . These con-
straints form a complete core constraint set. According to Theorem 5, it is easy to verify 
that none of these constraints is redundant.

Theorem  5  For a constraint, if we can find a payment result beyond the core, which 
becomes feasible after removing this constraint, then this constraint is not redundant.

For arbitrary n, where n is the number of winners, we can construct such an example 
that all the constraints of (C2) are not redundant in this example. Therefore, we have the 
following theorem.

Theorem 6  To produce the core correctly, the number of constraints is at least n
2

2
+

3

2
n, 

where n is the number of winners.

This theorem is proved in [6] and we omit it in this paper. In addition, the total size of 
constraint set (C2) and IR constraints is exactly n

2

2
+

3

2
n , which means this constraint set is 

the optimal core constraint set for path auction.

4 � A new format of constraint set (C3)

Though the number of constraints couldn’t be reduced, the format of constraint can be 
organized to accelerate the computation. For the purpose of computation, we put forward a 
new format of constraint set (C3) as

(23)

⎧⎪⎨⎪⎩

pe1 ≤ 3, pe2 ≤ 3, pe3 ≤ 3

pe1 + pe2 ≤ 5, pe2 + pe3 ≤ 5

pe1 + pe2 + pe3 ≤ 7
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where G∖Ew is the graph that removes the edges of Ew in G. For any vertex pair (vi, vj) , if 
dG�Ew

(vi, vj) doesn’t exist, then the corresponding constraint won’t be included in (C3). In 
Fig. 2, for example, the constraints of (C3) are the same as (C2).

According to (C3), to get the core is to find the edge weights of the shortest path 
such that every subpath of the shortest path should be no more than the second shortest 
path after removing the shortest path. In graph theory language, we could summary that 
the core is the change range of weights of the shortest path such that the shortest path 
remains the shortest between two given vertices.

In this format, the number of constraints is no more than (C2) because when 
dG�Ew(vi ,vj)

(vi, vj) doesn’t exist, dG�Ew
(vi, vj) doesn’t exist either. (C3) is just like another for-

mat of (C2) and it can reduce some redundant constraints of (C2). Moreover, (C3) is con-
venient because the shortest path is only computed in one graph G∖Ew , instead of different 
graphs in (C2). Then we can accelerate the computation by using some fast algorithms such 
as single-source shortest path algorithm. Above all, (C3) is better than (C2) in general case. 
Next, we prove the correctness of (C3).

Theorem 7  The two constraint sets (C2) and (C3) describe the same core.

Proof  Similarly, we prove this theorem from two aspects and we prove (C2) ⇒ (C3) at 
first.	�  ◻

Lemma 4  Assuming that there exists at least a path from vi to vj in both G and G1, if 
G ⊃ G1, then dG(vi, vj) ≤ dG1

(vi, vj).

For any vertex pair (va, vb) where 0 ≤ a < b ≤ n , we have that G�Ew ⊂ G�Ew(va, vb) . 
According to Lemma 4, we have the following inequality.

Therefore, (C2) ⇒ (C3) is established because (25) holds for arbitrary vertex pair (va, vb) . 
Afterwards, we prove that (C3) ⇒ (C2).

(24)(C3) ∶
∑

ek∈Ew(vi ,vj)

pek ≤ dG�Ew
(vi, vj) ∀i, j 0 ≤ i < j ≤ n

(25)
∑

ek∈Ew(va ,vb)

pek ≤ dG�Ew(va ,vb)
(va, vb) ≤ dG�Ew

(va, vb)

Fig. 7   An example of vertex pair (va, vb) and the path PG�Ew(va ,vb)
(va, vb) is signed by red arrows (Color fig-

ure online)
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As in Fig.  7, (va, vb) is an arbitrary vertex pair. The constraint corresponding to 
(va, vb) in (C2) is

PG�Ew(va ,vb)
(va, vb) is the shortest path from va to vb in G�Ew(va, vb) and PG�Ew

(va, vb) is the 
shortest path in G∖Ew . If the two paths have the same cost, it is obvious that (C3) ⇒ (C2) 
is established.

In the other case that the two paths’ costs are different, PG�Ew(va ,vb)
(va, vb) is shorter than 

PG�Ew
(va, vb) because that there are more edges in graph G�Ew(va, vb) . These extra edges 

are from the edge set Ew(v0, va) and Ew(vb, vn) , so the path PG�Ew(va ,vb)
(va, vb) must pass 

some edges in Ew(v0, va) ∪ Ew(vb, vn) , otherwise the two paths’ costs will be the same. 
Therefore, it must pass some vertices of Vw(v0, va) ∪ Vw(vb, vn) . We use va′ to denote the 
last passed vertex in Vw(v0, va) . Due to va ∈ Vw(v0, va) , the vertex va′ must exist. After pass-
ing va′ , this path will pass another vertex vb′ which is the first passed vertex in Vw(vb, vn) . 
The vertex vb′ must exist because vb ∈ Vw(vb, vn) . Then, we obtain a subpath from va′ to 
vb′ , which is the shortest path in G�Ew(va, vb) . This subpath is also the shortest in G∖Ew 
according to Lemma 3. Thus, in the constraint set (C3), the constraint corresponding to the 
vertex pair (va� , vb� ) is

We can see that Ew(va, vb) ⊂ Ew(va� , vb� ) , then the constraint can be written as

dG�Ew
(va� , vb� ) is the cost of a subpath of PG�Ew(va ,vb)

(va, vb) , so we have

Finally, by substituting (29) into (28), we obtain

The constraint (30) is just the constraint of vertex pair (va, vb) in (C2). (va, vb) is arbitrary, 
so (C3) ⇒ (C2) is proved and Theorem 7 is established. 	� ◻

5 � Core pricing algorithms

Previous sections are the theoretical discussion of the constraint sets in core-selecting path 
mechanism. As we know, the core gives us a feasible region constrained by a set of ine-
qualities, then, how to choose the final result in the feasible region is the next question to 
answer.

To minimize incentives of misreporting, a minimum-revenue core-selecting rule is put 
forward and commonly used as a pricing rule for spectrum auction [9]. This rule chooses 

(26)
∑

ek∈Ew(va ,vb)

pek ≤ dG�Ew(va,vb)
(va, vb)

(27)
∑

ek∈Ew(va� ,vb� )

pek ≤ dG�Ew
(va� , vb� )

(28)
∑

ei∈Ew(va ,vb)

pei ≤ dG�Ew
(va� , vb� )

(29)dG�Ew
(va� , vb� ) ≤ dG�Ew(va ,vb)

(va, vb)

(30)
∑

ek∈Ew(va ,vb)

pek ≤ dG�Ew(va,vb)
(va, vb)
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the bidder-Pareto-optimal core outcome as the final result, which could maximize the profit 
of bidders and don’t block the core constraints. Next, we provide several pricing algorithms 
to get the bidder-Pareto-optimal core outcome and discuss them in the rest of this paper.

Definition 7  (Bidder-Pareto-optimal core outcome) A core outcome is bidder-Pareto-
optimal if there is no other core outcome weakly preferred by every bidder in the winner 
coalition.

Theorem 8  An outcome is bidder-Pareto-optimal if it owns the maximum total payment 
in the core.

Proof  When the total payment is the maximum in the core, there exists no outcome that 
could improve one’s profit without hurting others’ profits in the winner coalition. There-
fore, the outcome with a maximum payment is bidder-Pareto-optimal in the core. 	�  ◻

In graph theory language, this outcome is aimed to find the largest total weight such that 
the original shortest path could remain the shortest. As we can see, the problem of computing 
the maximum total payment is just an optimization problem subject to the core constraints as 
follows.

Since all the constraints are linear inequalities, the straightforward method is to solve a 
linear programming problem after obtaining all the constraints. Following this idea, we 
design three direct algorithms that are Linear Programming Path Auction algorithm based 
on the constraint set (C1), (C2) and (C3) respectively, abbreviated as LPPA-C1, LPPA-C2 
and LPPA-C3 algorithm.

5.1 � LPPA‑C1 algorithm

Review the constraint set (C1)

Let �1
x
 be dG�x(v0, vn) − dG(v0, vn) +

∑
ei∈x

cei for each x. Note that �1
x
= ∞ if dG�x(v0, vn) 

doesn’t exist. All �1
x
 form a vector �1 , then we have

The formula (33) represents (C1). A1 is a (2n − 1) ∗ n matrix, where n is the edge number 
of the shortest path. A1

ij
 equals 1 only when the i-th set x includes the j-th edge ej , or A1

ij
 

equals 0. p is the vector of payment profile. Then the maximum payment can be computed 
by solving linear programming LP1.

(31)
max

∑
ei∈Ew

pei

subject to ∶ core constraints

(32)
∑
ei∈x

pei ≤ dG�x(v0, vn) − dG(v0, vn) +
∑
ei∈x

cei

(33)A1pT ≤ �1T
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c is the cost vector and � is the maximum payment. LP1 has n decision variables and 
2n − 1 + n constraints. The pseudocode of LPPA-C1 algorithm is described as Algorithm 1. 

5.2 � LPPA‑C2 algorithm

Review the constraint set (C2)

(va, vb) is a vertex pair of Vw and 0 ≤ a < b ≤ n . Similarly, let �2
(a,b)

 be dG�Ew(va ,vb)
(va, vb) for 

each pair (va, vb) . Note that �2
(a,b)

= ∞ if dG�Ew(va ,vb)
(va, vb) doesn’t exist. All �2

(a,b)
 form a 

vector �2 , then we have

The formula (36) represents (C2). A2 is a n(n+1)
2

× n matrix, where n is the edge number of 
the shortest path. A2

ij
 equals 1 only when the j-th edge ej is in the i-th set Ew(va, vb) or A2

ij
 

equals 0. Then the maximum payment can be computed by solving linear programming 
LP2

LP2 has n decision variables and n(n+1)
2

+ n constraints. Compared with LPPA-C1 algo-
rithm, the constraint number greatly decreases. The procedure is similar so we omit it.

(34)

LP1 ∶ � = max p × 1

subject to ∶ A1pT ≤ �1T

p ≥ c

(35)
∑

ek∈Ew(va ,vb)

pek ≤ dG�Ew(va,vb)
(va, vb)

(36)A2pT ≤ �2T

(37)

LP2 ∶ � = max p × 1

subject to ∶ A2pT ≤ �2T

p ≥ c
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5.3 � LPPA‑C3 algorithm

Review the constraint set (C3)

(va, vb) is a vertex pair of Vw and 0 ≤ a < b ≤ n . Similarly, let �3
(a,b)

 be dG�Ew
(va, vb) for each 

pair (va, vb) . Note that �3
(a,b)

= ∞ if dG�Ew
(va, vb) doesn’t exist. All �3

(a,b)
 form a vector �3 , 

then we have

The formula (39) represents (C3). A3 is a n(n+1)
2

× n matrix, where n is the edge number of 
the shortest path. A3

ij
 equals 1 only when the j-th edge ej is in the i-th set Ew(va, vb) , or A3

ij
 

equals 0. Then we can calculate the maximum payment by solving linear programming LP3

.

LP3 has n decision variables and n(n+1)
2

+ n constraints, which is the same as LPPA-C2 
algorithm. We notice that single-source shortest path algorithm could be used to accelerate 
the calculation in LPPA-C3 algorithm. 

In LPPA-C1 algorithm and LPPA-C2 algorithm, the shortest path is calculated in dif-
ferent graphs G∖x and G�Ew(va, vb) . The graph will be different when x or (va, vb) is differ-
ent. Therefore, LPPA-C1 algorithm needs to run the shortest path algorithm 2n − 1 times 
while LPPA-C2 needs to run n(n+1)

2
 times. By contrast, LPPA-C3 algorithm is convenient 

because that all the shortest paths are computed in the same graph G∖Ew . As a result, we 

(38)
∑

ek∈Ew(va ,vb)

pek ≤ dG�Ew
(va, vb)

(39)A3pT ≤ �3T

(40)

LP3 ∶ � = max p × 1

subject to ∶ A3pT ≤ �3T

p ≥ c
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can use single-source or multi-source shortest path algorithm, which is faster according to 
our experiments.

In this paper we use the single-source shortest path algorithm to compute all the costs.3 
LPPA-C3 algorithm just needs to run this shortest path algorithm (n − 1) times. The pseu-
docode is described as Algorithm 2.

5.4 � CCG‑VCG algorithm

To get the bidder-Pareto-optimal core outcome in a combinatorial auction, Core Constraint 
Generation (CCG) algorithm was proposed by [12], which is expected to deal with a mod-
erate number of constraints. CCG algorithm uses the method of constraint generation that 
considers only the most valuable constraints. According to [12], we design a specific CCG 
algorithm called CCG-VCG algorithm for path auction.

Definition 8  (Most blocking path) For an outcome O including Ew and P, replace the 
bids in Ew with the payments in P and denote by Ew′ the new winner set. If the total cost of 
edges in Ew′ is equal to the total value in P, then O has no blocking paths. Otherwise, Ew′ is 
the most blocking path for the outcome O.

In CCG-VCG algorithm, we initialize the payments using the VCG price for each win-
ner. Denote by CCG-SET the constraint set in this algorithm and we initialize CCG-SET 
as follows.

3  The algorithm is used by the package nexworkx 2.1, we didn’t use the multi-source shortest path algo-
rithm because that actually networkx 2.1 achieves the multi-source algorithm by calling single-source algo-
rithm many times.
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The iterations of the algorithm are indexed by t and pt
ei
 is the payment for ei in the t-th itera-

tion. We compute the winner set Ew′ after this initialization. If the total cost of Ew′ is not 
equal to the total payment of pt

ei
 , then we have a most blocking path. Let z = Ew ∩ Ew� and 

we obtain a constraint related to Ew′ as

Add the constraint (42) into CCG-SET and solve the linear programming problem LP.

Afterwards, we could get a payment Pt = {pt
e1
, pt

e2
,… , pt

en
} as the result of LP. Pt is the 

payment set in the t-th iteration. Then we change the cost of winner edges from pt−1
ei

 to pt
ei
 

and compute the new winner set Ew′ . If Ew′ is a most blocking path then we start a new 
iteration, otherwise we will get the final result Pt , which is a bidder-Pareto-optimal core 
outcome.

The pseudocode of CCG-VCG algorithm is shown above as Algorithm 3 and the proof 
for its correctness is provided in the appendix.

6 � Bellman–Ford path auction algorithm

As we can see, the core is a polytope with polynomial constraints and the optimization 
objective of maximum total payment is a hyperplane. This objective should be tangent to 
the polytope when we get the maximum payment. Thus, there must be some tight con-
straints that are necessary to consider. Under such motivation, we propose a novel algo-
rithm called Bellman–Ford Path Auction (BFPA) algorithm. BFPA algorithm can get the 
maximum core payment by only running Bellman–Ford algorithm once. Bellman–Ford 

(41)CCG-SET

{
pei ≤ pVCG

ei
, 1 ≤ i ≤ n

pei ≥ cei , 1 ≤ i ≤ n

(42)
∑

ei∈Ew�z

pei ≤
∑

ei∈Ew� �z

cei

(43)
LP ∶ max P × 1

subject to ∶ CCG-SET

Fig. 8   An example for BFPA algorithm. There are 6 bidders e′
1
, e′

2
, e′

3
, e4, e5, e6 with cost 

−1,−1,−1, 5, 5, 10 , where e′
i
 is the reverse edge of the winner ei
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algorithm4 is a single-source shortest path algorithm that can deal with the edges which 
have negative weights. 

BFPA algorithm is described as Algorithm 4. In BFPA algorithm, we generate a graph 
G′ by converting each edge in Ew to a reverse edge with a negative cost. Compute the short-
est path from v0 to other vertices in Vw and we can obtain a solution of payment as

dG� (v0, vi) is the cost of the shortest path from v0 to vi in G′ . Note that dG� (v0, v0) = 0 , and 
the total payment of this solution is

For example, in Fig.  8, the original winner set Ew is {e1, e2, e3} and each win-
ner’s cost is 1. In BFPA algorithm, we delete the edges in Ew and add their reverse 
edges as e′

1
, e′

2
, e′

3
 to get the graph G′ . We can see that the shortest path from v0 to v1 is 

PG� (v0, v1) = v0e4v2e
�
2
v1 , whose cost is dG� (v0, v1) = 4 . Similarly, we have dG� (v0, v2) = 5 

and dG� (v0, v3) = 9 . Then we could get the payment solution of BFPA algorithm as

(44)pei = dG� (v0, vi) − dG� (v0, vi−1) ∀i ∈ [1, n]

(45)

n∑
i=1

pei =

n∑
i=1

(dG� (v0, vi) − dG� (v0, vi−1))

= dG� (v0, vn) − dG� (v0, v0)

= dG� (v0, vn)

(46)

⎧⎪⎨⎪⎩

pe1 = 4 − 0 = 4

pe2 = 5 − 4 = 1

pe3 = 9 − 5 = 4

4  In the experiment, the algorithm we use is actually SPFA algorithm, it is an improved version of Bell-
man–Ford algorithm.
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Next, we completely prove that the payment solution of BFPA algorithm is a correct maxi-
mum core payment in Sects. 6.1–6.3.

6.1 � Existence of the shortest path in graph G′

In the beginning, we assume that there is no cut edge for the connectivity from v0 to vn , 
which could not obviously draw the conclusion that there exists a path from v0 to vn in 
G′ . Therefore, we need to prove the following theorem at first.

Theorem 9  There exists at least one path from v0 to vn in graph G′.

The proof is provided in the appendix. Once there are edges with negative costs in 
the graph, there is doubt whether a negative closed walk exists. If a negative closed walk 
exists, there may not exist the shortest walk because it can pass the negative closed walk 
endlessly so that the cost can be infinitely negative. Bellman–Ford algorithm couldn’t 
work in this situation.

Lemma 5  Any closed walk can be expressed as a union of several circuits, where circuit 
is a closed walk with no repeated vertices.

According to Lemma 5, the following Theorem 10 is sufficient to guarantee the non-
existence of negative closed walk in G′.

Theorem 10  There exists no negative circuit in G′.

Proof  Assuming that there exists one negative circuit in G′ , denoted by C . C must include 
some negative edges in G′ so that it must pass some vertices in Vw . Among all the passed 
vertices in Vw , denote by vi the leftmost vertex and vj the rightmost vertex, like Fig. 9. This 
circuit has two subpaths that are vi → vj and vj → vi . We only consider the subpath vi → vj.

This subpath can only pass negative edges between vi and vj . Without loss of general-
ity, assume that the first passed negative edge is (va1 , va1−1) . Then this subpath may pass 
some vertices in Vw(vi, va1 ) and denote by vb1 the last passed vertex. vb1 must exist because 

Fig. 9   Negative circuit C , signed by red arrows (Color figure online)
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va1−1 ∈ Vw(vi, va1 ) and it is passed after va1 . After that, this path may also pass some nega-
tive edges between va1 and vj . Denote by (va2 , va2−1) the first passed negative edge and vb2 
the last passed vertex in Vw(va1 , va2 ) . Repeat this process until this path finally ends at ver-
tex vj . Note that a0 = b0 = i, ax = bx = j , and we can get a path division as

For example, in Fig. 9, the path division is vi → va1 → vb1 → va2 → vb2 → vj . In this path 
division, va2 is the starting vertex of the first passed negative edge between va1 and vj . vb2 is 
the last passed vertex in Vw(va1 , va2 ).

We consider one part of these subpaths as

These subpaths can be unified as vbi → vai+1 , i ∈ [0, x − 1] . As the definition above, the last 
passed vertex in Vw(va0 , va1 ),Vw(va1 , va2 ),… ,Vw(vai−1 , vai ) is vb1 , vb2 ,… , vbi . Therefore, vbi is 
not only the last passed vertex in Vw(vai−1 , vai ) but also the last passed vertex in Vw(va0 , vai ) . 
Besides, vai+1 is the starting vertex of the first passed negative edge between vai and vj . As a 
consequence, the subpath vbi → vai+1 doesn’t include any negative edge, so these subpaths 
also exist in graph G. Denote by dG� (vbi → vai+1 ) the cost of the subpath vbi → vai+1 and we 
can obtain the following inequalities.

Combine these x inequalities and we obtain

Due to that al ≥ bl,∀l ∈ [0, x] , we have the following inequality.

Substituting (49) into (48), we obtain

In this inequality, the right side is the sum of some positive subpaths’ costs in the circuit C 
and the left side is the sum of absolute value of all the negative edges’ costs between vi and 
vj . This circuit passes at most all the negative edges between vi and vj . Denote by dG� (C) the 
cost of circuit C and we have

vb0 → va1 → vb1 → va2 → vb2 … vbx−1 → vax

vb0 → va1 , vb1 → va2 ,… , vbx−1 → vax

(47)

⎧⎪⎪⎨⎪⎪⎩

∑
ek∈Ew(vb0 ,eva1

) cek ≤ dG� (vb0 → va1 )∑
ek∈Ew(vb1 ,va2 )

cek ≤ dG� (vb1 → va2 )

…∑
ek∈Ew(vbx−1 ,vax )

cek ≤ dG� (vbx−1 → vax )

(48)
x−1∑
l=0

∑
ek∈Ew(vbl ,val+1 )

cek ≤

x−1∑
l=0

dG� (vbl → val+1 )

(49)
x−1∑
l=0

∑
ek∈Ew(vbl ,val+1 )

cek ≥

x−1∑
l=0

∑
ek∈Ew(vbl ,vbl+1 )

cek =
∑

ek∈Ew(vi ,vj)

cek

(50)
∑

ek∈Ew(vi,vj)

cek ≤

x−1∑
l=0

dG� (vbl → val+1 )
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Inequality (51) means that the cost of this circuit can’t be negative, which produces a con-
tradiction, so Theorem 10 is established. 	�  ◻

Lemma 6  If there isn’t any negative circuit in the graph G′, then ∀s, t ∈ G, the cost of the 
shortest walk from s to t is equal to that of the shortest path.

Since there isn’t a negative circuit in graph G′ , according to Lemma 6, we only need to 
consider the paths in graph G′ . We also have Theorem 11.

Theorem 11  The shortest path from vn to v0 in G′ is the reverse path of original shortest 
path Pw(v0, vn).

Proof  This reverse path includes all the negative edges in G′ , so it is the path with the 
smallest cost. There is no other path shorter than it. Therefore, it is the shortest path. 	� ◻

We denote by PG� (vn, v0) this reverse path. According to Lemma  2, each subpath of 
PG� (vn, v0) is also the shortest path in G′.

6.2 � Upper bound of the core outcome

In this part, we only provide a proof for Theorem 12.

Theorem 12  dG� (v0, vn) is an upper bound for total payment in the core.

Proof  dG� (v0, vn) is the cost of the shortest path from v0 to vn in G′ . We denote this path by 
PG� (v0, vn) , abbreviated as PG′ . Just like the analysis in Sect. 6.1, let i = 0, j = n and we can 
get a division of PG′ as

Figure 10 is a general situation of PG′ . vai is the starting vertex of the first passed nega-
tive edge between vai−1 and vn while vbi is the last passed vertex in Vw(vai−1 , vai ) . Then we 
consider a part of subpaths as

(51)dG� (C) ≥ −
∑

ek∈Ew(vi ,vj)

cek +

x−1∑
l=0

dG� (vbl → val+1 ) ≥ 0

v0 → va1 → vb1 → va2 → vb2 ,… , vbx−1 → vn

Fig. 10   The path PG′ , signed by red arrows (Color figure online)
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Note that a0 = b0 = 0 and ax = bx = n . According to the previous analysis, there isn’t any 
negative edge in these subpaths, so these subpaths still exist in graph G∖Ew . Denote by 
dG� (vbi → vai+1 ) the cost of the subpath vbi → vai+1 , i ∈ [0, x − 1] . Based on the constraint 
set (C3) and Lemma 1, we could get a constraint for the core payment as

where i ∈ [0, x − 1] . Due to that bi < bi+1 < ai+1 , combine these x constraints above and we 
can get

Inequality (53) can be reorganized as

Then, we consider the rest subpaths as

These subpaths are also the shortest because PG′ is the shortest path. According to Theo-
rem  11 and Lemma  2, the shortest path from vai to vbi should be the reverse path of 
Pw(vbi , vai ) , and its cost is −

∑
ek∈Ew(vbi ,vai )

cek . Denote by dG� (vai → vbi ) the cost of subpath 
vai → vbi , where i ∈ [1, x − 1] , and we have the following equation.

According to individual rationality, we have

Combining all the constraints in (56) for i = 1, 2,… , x − 1 , we obtain

vb0 → va1 , vb1 → va2 ,… , vbx−1 → vax

(52)

∑
ek∈Ew(vbi ,vai+1 )

pek ≤ dG�Ew
(vbi , vai+1 )

≤ dG� (vbi → vai+1 )

(53)

x−1∑
i=0

∑
ek∈Ew(vbi ,vai+1 )

pek =

x−1∑
i=0

∑
ek∈Ew(vbi ,vbi+1 )

pek +

x−1∑
i=0

∑
ek∈Ew(vbi+1 ,vai+1 )

pek

=
∑
ek∈Ew

pek +

x−1∑
i=1

∑
ek∈Ew(vbi ,vai )

pek

≤

x−1∑
i=0

dG� (vbi → vai+1 )

(54)
∑
ek∈Ew

pek ≤

x−1∑
i=0

dG� (vbi → vai+1 ) −

x−1∑
i=1

∑
ek∈Ew(vbi ,vai )

pek

va1 → vb1 , va2 → vb2 ,… , vax−1 → vbx−1

(55)dG� (vai → vbi ) = −
∑

ek∈Ew(vbi ,vai )

cek

(56)
∑

ek∈Ew(vbi ,vai )

pek ≥
∑

ek∈Ew(vbi ,vai )

cek = −dG� (vai → vbi )

(57)
x−1∑
i=1

∑
ek∈Ew(vbi ,vai )

pek ≥ −

x−1∑
i=1

dG� (vai → vbi )
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Finally, substituting (57) into (54), we can get

Formula (58) is derived through the constraints of (C3) and individual rationality. This for-
mula means that the sum of core payment is no more than dG� (v0, vn) . Thus, we can draw a 
conclusion that dG� (v0, vn) is an upper bound of total payment in the core. 	�  ◻

6.3 � The proof for constraint satisfaction

In Sect.  6.2, we have proved that BFPA algorithm achieves a total payment of 
dG� (v0, vn) , which is an upper bound in the core. But this is not enough to verify that it 
is a correct core outcome. BFPA algorithm gives a payment for each winner, which is 
pei = dG� (v0, vi) − dG� (v0, vi−1) . Next, we will prove that this payment solution satisfies 
all the constraints in core-selecting path mechanism so that it is a correct core outcome.

Theorem 13  The payment solution of BFPA algorithm satisfies all the IR constraints, i.e.

Proof  Assuming that there exists a IR constraint which is not satisfied, then this constraint 
will become

According to BFPA algorithm, we have

Reorganize (60) and we obtain

In the inequality (61), dG� (v0, vi−1) is the cost of the shortest path from v0 to vi−1 in G′ . In the 
left side, dG� (v0, vi) is the cost of the shortest path from v0 to vi in G′ , denoted by v0 → vi , 
and (−cei ) is the cost of a negative edge (vi, vi−1) in G′ . Thus, dG� (v0, vi) + (−cei ) is the cost 
of a path from v0 to vi−1 , which consists of two subpaths that are v0 → vi and (vi, vi−1) . 
According to (61), its cost is less than dG� (v0, vi−1) . This is contradictory to that dG� (v0, vi−1) 
is the cost of the shortest path. Therefore, the payment solution of BFPA algorithm satisfies 
all the IR constraints. 	�  ◻

Theorem  14  The payment solution of BFPA algorithm satisfies all the constraints in 
(C3),  i.e.

(58)

∑
ek∈Ew(v0,vn)

pek ≤

x−1∑
i=0

dG� (vbi → vai+1 ) +

x−1∑
i=1

dG� (vai → vbi )

= dG� (vb0 → va1 ) + dG� (va1 → vb1 ) +⋯ + dG� (vbx−1 → vax )

= dG� (v0, vn)

pei ≥ cei ,∀i ∈ [1, n]

(59)pei < cei , i ∈ [1, n]

(60)pei = dG� (v0, vi) − dG� (v0, vi−1) < cei

(61)dG� (v0, vi) + (−cei ) < dG� (v0, vi−1)
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Proof  Assuming that there exists a constraint in (C3) which is not satisfied, then this con-
straint will become

According to BFPA algorithm, we have

Substituting (63) into (62), we obtain the following inequality.

In (64), dG� (v0, vj) is the cost of the shortest path from v0 to vj in G′ . In the right side, 
dG� (v0, vi) is the cost of the shortest path from v0 to vi in G′ , denoted by v0 → vi . dG�Ew

(vi, vj) 
is the cost of the shortest path from vi to vj in G∖Ew and this path also exists in G′ because 
G∖Ew ⊂ G′ , denoted by vi → vj . Thus, dG� (v0, vi) + dG�Ew

(vi, vj) is just the cost of a walk 
from v0 to vj in G′ . This walk consists of two paths that are v0 → vi and vi → vj . According 
to (64), its cost is less than dG� (v0, vj) . Similarly, this is contradictory to that dG� (v0, vj) is 
the cost of the shortest path (also the shortest walk). Therefore, the payment solution of 
BFPA algorithm satisfies all the constraints in (C3). 	�  ◻

Above all, we can draw a conclusion that the payment solution of BFPA algorithm is 
a correct core outcome and its total payment is the maximum in the core. Therefore, this 
payment solution is just a bidder-Pareto-optimal core outcome we are looking for.

7 � Experiment

7.1 � Experiment dataset

We choose five network datasets in SNAP [25] to construct the graphs in our experi-
ments. These networks are described as follows.

•	 Facebook network
	   The dataset consists of friend lists from Facebook. The data was collected from 

survey participants using Facebook app.
•	 Wikipedia voting network
	   The network contains voting data for Wikipedia administrator elections. Vertices 

in the network represent Wikipedia users and a directed edge from vertex i to vertex 
j represents that user i votes on user j.

•	 P2p-Gnutella04 network

∑
ek∈Ew(vi ,vj)

pek ≤ dG�Ew
(vi, vj) ∀i, j 0 ≤ i < j ≤ n

(62)
∑

ek∈Ew(vi ,vj)

pek > dG�Ew
(vi, vj) 0 ≤ i < j ≤ n

(63)

∑
ek∈Ew(vi ,vj)

pek =

j∑
k=i+1

(dG� (v0, vk) − dG� (v0, vk−1))

= dG� (v0, vj) − dG� (v0, vi)

(64)dG� (v0, vj) > dG� (v0, vi) + dG�Ew
(vi, vj)
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	   The dataset describes the Gnutella peer-to-peer file sharing network from August 
4 2002. Vertices represent hosts in the Gnutella network topology and edges repre-
sent connections between the Gnutella hosts.

•	 Soc-Epinions1 network
	   This is a who-trust-whom online social network of a general consumer review site 

Epinions.com. The vertices represent the members of the site and the edges repre-
sent their trust relationships.

•	 Twitter network
	   This dataset consists of friend lists from Twitter. The data was crawled from pub-

lic sources.

The detailed network statistics are given in Table 1.

In these networks, the true information of cost is hard to get. In this paper, we use 
reported cost data from a micro-blog advertising platform weiboyi,5 where micro-bloggers 

Table 1   Network statistics Networks Vertices Edges d
max

90-per-
centile 
d
max

Facebook 4039 88,234 8 4.7
Wiki-Vote 7115 103,689 7 3.8
P2p-Gnutella04 10,876 39,994 9 5.4
Soc-Epinions1 75,879 508,837 14 5
Twitter 81,306 1,768,149 7 4.5

Table 2   Average total payment under reported cost distribution

Algorithm Facebook Wiki-Vote P2p04 Soc-Ep1 Twitter

Shortest path 2803.11 1117.08 5882.30 1817.86 1321.71
(± 424.28) (± 250.86) (± 473.79) (± 302.22) (± 138.68)

VCG 8499.39 2951.42 19033.63 6293.88 3548.40
(± 1873.64) (± 624.32) (± 2549.37) (± 1179.04) (± 711.23)

Core pricing algorithm
 CCG-VCG 5756.58 2585.18 11215.42 5415.19 2926.54

(± 1096.39) (± 607.04) (± 1253.28) (± 992.79) (± 650.81)

 LPPA-C2 5756.58 2585.18 11215.42 5415.19 2926.54
(± 1096.39) (± 607.04) (± 1253.28) (± 992.79) (± 650.81)

 LPPA-C3 5756.58 2585.18 11215.42 5415.19 2926.54
(± 1096.39) (± 607.04) (± 1253.28) (± 992.79) (± 650.81)

 BFPA 5756.58 2585.18 11215.42 5415.19 2926.54
(± 1096.39) (± 607.04) (± 1253.28) (± 992.79) (± 650.81)

5  http://www.weibo​yi.com/.

http://www.weiboyi.com/


	 Autonomous Agents and Multi-Agent Systems (2020) 34:18

1 3

18  Page 30 of 37

are asked to report their cost to make recommendations to friends in their social networks. 
We assign the edges randomly with costs in this dataset.

In each network, we generate 200 problem instances where the source vertex v0 and tar-
get vertex vn are selected uniformly at random from all vertices. The experiments were run 
on a high-performance server with 20 × 2.2 GHZ Intel Xeon Opteron cores and 230 GB of 
RAM. Besides, we describe the graph with networkx 2.1 and solve the linear programming 
with SciPy 0.19.1 on a runtime environment of Python 3.6.8. The payment result is shown 
in Table 2. Note that the bracketed content is the confidence interval of 95%.

In Table 2, we can see that the total payment computed by all the core pricing algo-
rithms is always the same in all networks. This result confirms the correctness of our algo-
rithms. Besides, the maximum core total payment is smaller than VCG total payment, 
which indicates that core-selecting path mechanism can reduce the overpayment.

7.2 � Computational efficiency

In this part, we mainly demonstrate the computational efficiency of our algorithms. We use 
two shortest path algorithms in this paper, which are Dijkstra algorithm and Bellman–Ford 
algorithm. Their time complexities are O(|E| + |V| log |V|) and O(|V||E|) respectively. 
Then, we provide the summary of time complexity for our algorithms in Table 3, where n 
is the number of winners and m is the number of iterations in CCG-VCG algorithm. Notice 
that there is a process of linear programming in core pricing algorithms except BFPA algo-
rithm, whose time complexity is O(n2) ∼ O(n3) . We omit this time cost because it is very 
small compared with the shortest path algorithms in our experiments.

As shown in Table  3, LPPA-C1 algorithm is significantly slower than the other 
algorithms so that we don’t compare its performance with other methods in our 
experiments. According to Table  3, the time complexity of LPPA-C3 algorithm is 
O(n(|E| + |V| log |V|)) , which is strictly better than CCG-VCG algorithm and LPPA-
C2 algorithm. In addition, we can see that the time complexity of BFPA algorithm is 
O(|V||E|), which is independent of n.

Afterwards, we compare the average runtime in our experiments of five real-world 
datasets. The result is shown in Table 4. LPPA-C2 algorithm and CCG-VCG algorithm 
are the state-of-the-art algorithms achieved in the previous work [6]. Compared with 

Table 3   Worst case time 
complexity

Algorithm Worst case time complexity

Shortest path algorithm O(|E| + |V| log |V|)
VCG O(n(|E| + |V| log |V|))
Core pricing algorithm
 CCG-VCG O((n + m)(|E| + |V| log |V|))
 LPPA-C1 O(2n(|E| + |V| log |V|))
 LPPA-C2 O(n2(|E| + |V| log |V|))
 LPPA-C3 O(n(|E| + |V| log |V|))
 BFPA O(|V||E|)
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these two algorithms, our new algorithms (LPPA-C3 and BFPA) have better perfor-
mance in all datasets. As the fastest algorithm, BFPA algorithm is about 1 ∼ 5 times 
faster than LPPA-C2 algorithm and 1 ∼ 4 times faster than CCG-VCG algorithm. 
Besides, it is faster than computation of VCG payment.

Table 4   Average runtime performance (in s)

Algorithm Facebook Wiki-Vote P2p04 Soc-Ep1 Twitter

Shortest path 0.019 0.040 0.027 0.406 1.331
(± 0.003) (± 0.005) (± 0.003) (± 0.030) (± 0.105)

VCG 0.172 0.266 0.469 4.946 24.528
(± 0.029) (± 0.021) (± 0.049) (± 0.312) (± 1.880)

Core pricing algorithm
 CCG-VCG 0.366 0.511 0.842 9.163 41.280

(± 0.059) (± 0.039) (± 0.083) (± 0.645) (± 3.511)

 LPPA-C2 0.540 0.518 1.916 8.258 44.043
(± 0.103) (± 0.053) (± 0.270) (± 1.011) (± 6.305)

 LPPA-C3 0.191 0.308 0.595 4.498 21.601
(± 0.023) (± 0.014) (± 0.038) (± 0.214) (± 1.084)

 BFPA 0.116 0.197 0.285 2.864 10.616
(± 0.012) (± 0.011) (± 0.009) (± 0.091) (± 0.326)

Bold values indicate the fastest runtime among all the core pricing algorithms in each of the columns

Fig. 11   The relationship between the runtime and the length of the shortest path in Twitter network, the 
error bar represents the confidence interval of 95%
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In order to explore the relationship between the runtime and the length of the shortest 
path, we carried on another experiment in the largest Twitter network. In this experiment, 
we randomly selected 50 vertex pairs based on different lengths of the shortest path to run 
the algorithms. The result is shown in Fig. 11.

On the whole, our two new algorithms perform better than the other core pricing algo-
rithms. BFPA algorithm may be a little slower when the length is short and it is the fast-
est when the length is more than 5. Besides, we can see that the runtime increases with 
the increasing length of path. The increasing length has a remarkable impact on LPPA-C2 
algorithm and CCG-VCG algorithm, while the impact is smaller in LPPA-C3 algorithm. 
As to BFPA algorithm, such impact is little and its runtime remains horizontal basically. 
This is because the primary time cost of BFPA algorithm is the Bellman–Ford algorithm, 
whose process is only related to the starting vertex. These experiments also verify our anal-
ysis of time complexity. Notice that LPPA-C2 and LPPA-C3 could compute the complete 
core while CCG-VCG and BFPA only get a final core outcome.

8 � Conclusion

In this paper, we focus on the core pricing algorithms in path auction. Although the win-
ner determination problem is easy to solve in path auction, there are also exponential con-
straints to consider. Firstly, we reduce the constraint number from O(2n) to O(n2) theoreti-
cally, and we prove that the number of constraints is at least n

2

2
+

3

2
n to produce the core 

correctly. Then, we give a novel format of constraint set (C3) which is convenient to obtain 
the core constraint by using single-source shortest path algorithm. Besides, in order to get 
the bidder-Pareto-optimal core outcome, we achieve five algorithms including LPPA-C1, 
LPPA-C2, LPPA-C3, CCG-VCG and BFPA. Last but not least, we test these algorithms in 
real-world datasets and our two new algorithms (LPPA-C3 and BFPA ) significantly sur-
pass the other algorithms in terms of runtime.

In our opinions, this paper reveals some structure properties of path auction and core 
polytope. Therefore, one of our future works is to improve the computation of core-select-
ing mechanism in other combinatorial auctions, whether to accelerate CCG algorithm or 
put forward new algorithms by using this heuristic approach. The other is to consider the 
payment in core-selecting path auction. In reality, the most commonly used approach is the 
core outcome which is nearest to the VCG payment [9], but some current researches show 
that this approach may not be the best payment rule [5]. As a result, it is valuable to work 
on it.
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Appendix A: Summary of main notation

G = (V ,E)	� A directed graph that consists of a edge set E and a vertex set V
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v0	� The starting vertex
vn	� The ending vertex
ei = (vi−1, vi)	� The edge that starts in the vertex vi−1 and ends in vi , also represents a 

bidder owning edge ei
cei	� The cost of the edge ei
�ei	� The utility of the bidder ei
Π	� Social welfare of the auction
0	� The auctioneer
N	� The total set of players, including the bidders and auctioneer
W(L)	� The social welfare of the subset L of N
P	� The payment set of the auction
pei	� The payment to the bidder ei
core	� The total set of core outcomes
WG(vi, vj)	� A walk from vi to vj in graph G
PG(vi, vj)	� The shortest path from vi to vj in graph G
VG(vi, vj)	� The vertex set of PG(vi, vj)

EG(vi, vj)	� The edge set of PG(vi, vj)

Pw(v0, vn)	� The path that is selected as the winner path in the auction
Ew(v0, vn) or Ew	� The edge set of Pw(v0, vn)

Vw(v0, vn) or Vw	� The vertex set of Pw(v0, vn)

Pw(vi, vj)	� A subpath of Pw(v0, vn) that is from vi to vj
Ew(vi, vj)	� The edge set of Pw(vi, vj)

Vw(vi, vj)	� The vertex set of Pw(vi, vj)

dG(vi, vj)	� The cost of the shortest path from vi to vj in graph G

Appendix B: Proof of the correctness of CCG‑VCG algorithm for path 
auction

Theorem  15  The outcome of CCG-VCG algorithm is a bidder-Pareto-optimal core 
outcome.

Proof  Consider the constraint added into CCG-SET

Ew′ is the new winner set in a new graph where we change the cost of each edge in Ew from 
pt−1
ei

 to pt
ei
 in G. Denote by G1 this graph and Pw′ the path corresponding to the edge set Ew′ . 

Pw′ is the shortest path in G1 . We first prove that the constraint (65) is a standard constraint 
of (C1).

In G1 , we remove the edges in Ew∖z and change the costs of the edges in z from pt
ei
 to cei . 

Denote by G2 this graph. Pw′ also exists in G2 because it doesn’t include any edge in Ew∖z . 
Compared with G1 , the cost of Pw′ reduces by 

∑
ei∈z

pt
ei
− cei

6 in G2 . As to other paths in G2 , 

(65)
∑

ei∈Ew�z

pei ≤
∑

ei∈Ew� �z

cei

6  pei ≥ cei according to CCG-SET.
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their costs reduce by 
∑

ei∈z
pt
ei
− cei at most, so Pw′ is also the shortest path in G2 . Note that 

G2 is just the graph G�(Ew�z) , from the constraint (65), we have

Recall the constraint in (C1) as

Let x = Ew�z , we have

The constraint (68) is (C1) is just the same as the constraint (66), so the constraint we add 
into CCG-SET during each iteration is a standard constraint of (C1). Then the constraint 
set CCG-SET is a subset of the constraint set (C1). In each iteration, CCG-VCG algorithm 
adds a constraint of (C1). The number of constraints in (C1) is limited so that this algo-
rithm must stop in a limited number of steps.

To prove the theorem, we just need to prove that the outcome of CCG-VCG algorithm 
is in the core. Assuming that the outcome of CCG-VCG algorithm isn’t in the core. Thus, 
there is at least one constraint in (C1) which is not satisfied by this result. Without loss of 
generality, let x = Ew�z

� is the corresponding set, then the constraint becomes

Then we have

(66)

∑
ei∈Ew�z

pei ≤
∑

ei∈Ew� �z

cei

= dG2
(v0, vn) −

∑
ei∈z

cei

= dG�(Ew�z)
(v0, vn) −

∑
ei∈z

cei

(67)(C1) ∶
∑
ei∈x

pei ≤ dG�x(v0, vn) − (dG(v0, vn) −
∑
ei∈x

cei ),∀x ∈ Ew

(68)

∑
ei∈Ew�z

pei ≤ dG�(Ew�z)
(v0, vn) −

(
dG(v0, vn) −

∑
ei∈(Ew�z)

cei

)

= dG�(Ew�z)
(v0, vn) −

∑
ei∈z

cei

(69)

∑
ei∈Ew�z

�

pei > dG�(Ew�z
�)(v0, vn) −

(
dG(v0, vn) −

∑
ei∈(Ew�z

�)

cei

)

= dG�(Ew�z)
(v0, vn) −

∑
ei∈z

cei

(70)

∑
ei∈Ew

pei =
∑

ei∈Ew�z
�

pei +
∑
ei∈z

�

pei

> dG�(Ew�z)
(v0, vn) +

∑
ei∈z

�

pei −
∑
ei∈z

�

cei
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where dG�(Ew�z)
(v0, vn) is the cost of the shortest path from v0 to vn in graph G�(Ew�z) . This 

path still exists in graph which changes the cost of edges in Ew from cei to pei . This change 
makes the cost of this path increase by 

∑
ei∈z

� pei −
∑

ei∈z
� cei at most. So the cost of this 

path is no more than dG�(Ew�z)
(v0, vn) +

∑
ei∈z

� pei −
∑

ei∈z
� cei , which means it is shorter than 

the sum of outcome in CCG-VCG algorithm. This produces a contradiction with terminal 
condition in CCG-VCG algorithm, so this theorem is established. 	� ◻

Appendix C: Proof of Theorem 9

Proof  In G′ , the edge in Ew is converted into a reverse edge with negative original cost. As 
we know, each edge is not cut edge for the connectivity from v0 to vn , that is, there exist a 
path from v0 to vn after removing this edge in graph G. We use the mathematical induction 
by proving the following two propositions. 

1.	 There exist a path from v0 to v1 in G′.
2.	 If there exists a path from v0 to vi in G′ , then there exists a path from v0 to vi+1 in G′ 

( 0 < i < n).

It is obvious that Theorem  9 is established if these two propositions is correct. Note 
that Vw(v1, vn) is the vertex set including v1, v2,… , vn . In proposition 1, since (v0, v1) is 
not a cut edge, there must exist a path from v0 to any vertex of Vw(v1, vn) in the graph 
G∖Ew . Otherwise, there will not exist a path from v0 to any vertex of Vw(v1, vn) in graph 
G�(v0, v1) , this is because compared with G∖Ew , the extra edges in G�(v0, v1) is useless 
for the connectivity between {v0} and Vw(v1, vn) . This means (v0, v1) is a cut edge, which 
is contradictory. Therefore, there exists a path from v0 to any vertex of Vw(v1, vn) in G∖Ew . 
This path also exists in G′ and once this path could arrive at any vertex of Vw(v1, vn) from 
v0 , it could arrive at v1 along the negative edges in G′ . Thus, proposition 1 is true.

In proposition 2, since there exists a path from v0 to vi in G′ , we can arrive at any vertex 
of Vw(v0, vi) by just lengthening this path along the negative edges. Based on that (vi, vi+1) 
is not a cut edge, similarly, we can draw a conclusion that there exists a path from any ver-
tex of Vw(v0, vi) to any vertex of Vw(vi+1, vn) . Then there also exists a path from any vertex 
of Vw(v0, vi) to any vertex of Vw(vi+1, vn) in G′ . Denote these two vertices by va, vb and we 

Fig. 12   Path v0 → vi → va → vb → vi+1



	 Autonomous Agents and Multi-Agent Systems (2020) 34:18

1 3

18  Page 36 of 37

have a path from v0 to vi+1 as v0 → vi → va → vb → vi+1 , like Fig. 12. Therefore, proposi-
tion 2 is proved.

Above all, Theorem 9 is established. 	�  ◻
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