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Abstract—Mobile crowdsensing has been regarded as an effi-
cient paradigm for performing large-scale sensing tasks. In this
paper, we consider a specific scenario, where the crowdsensing
platform needs to collect the sensing data in a requested time
window (RTW), and mobile users would bid for their sensing time
windows. This process could be modeled as a reverse auction.
In this context, the Vickrey-Clark-Groves (VCG) mechanism
becomes a generic auction mechanism that uniquely guarantees
both truthfulness and efficiency, but it is vulnerable to false-
name bidding and generates high overpayment for the platform.
Thus in this paper, we design the core-selecting mechanism to
solve VCG’s vulnerability and improve the revenue. We demon-
strate that our proposed mechanism achieves the properties of
RTW feasibility, efficiency, individual rationality, and false-name-
proofness. Besides, to minimize the incentives of users to deviate
from truthful-telling, we adopt a VCG-nearest payment rule and
propose an efficient algorithm called CCG-TWC. Our extensive
simulation results show that the core-selecting mechanism could
reduce VCG’s overpayment by about 10%.

Index Terms—Mobile crowdsensing, Time window, Core-
selecting,False-name-proof

I. INTRODUCTION

In recent years, the number of mobile users with sensor-
embedded smartphones has exploded, and mobile devices
(e.g., smartphone, iPad, PDA, etc.) becomes more and more
popular. According to the latest Ericsson mobility report[1],
the number of worldwide mobile subscriptions has reached
7.5 billion in 2017 and will approach 9.1 billion in 2022.
Besides, with the development of hardware technology, most
mobile devices are embedded with various types of sensors
(e.g., GPS, accelerometer, camera)[2]. Thus, devices such as
smartphones, smart wearable devices (e.g., Google glasses,
Apple Watch) could be used to collect information from the
surrounding environment.

The aforementioned trends motivate the development of the
mobile crowdsensing (MCS) [2], which provides an efficient
paradigm to collect large-scale sensing data. Compared with
the traditional sensor network, mobile crowdsensing, which
utilizes hundreds of thousands of ordinary users, has a huge
application potential due to its prominent advantages such as
wide spatio-temporal coverage, low cost, and good scalability.

∗Corresponding author: chjwang@nju.edu.cn

In the crowdsensing market for time window coverage tasks,
MCS system consists of two parts: the platform and smart-
phone users. The platform wants to buy continuous sensing
data in the whole required time window (RTW). Each user bids
with a user time window (UTW) in which she can collect the
sensing data. There are some real-world examples of existing
systems that fall into this scenario, such as bus arrival time
prediction system[3] and Ear-Phone[4]. This process of mobile
sensing could be modeled as a reverse auction, the goal is to
design a suitable mechanism for the platform to determine
which users to recruit, and how much to pay them.

The problem is hard because users may take some strate-
gies, such as lying about their costs or UTWs. The well
known Vickrey-Clark-Groves (VCG) mechanism is the unique
efficient and truthful mechanism. However, it is not robust
against false-name bids, which means the users can register
fake accounts to get more profit. Thus, VCG mechanism may
result in a high overpayment for the platform. In this paper,
we relax the restriction of truthfulness and propose the core-
selecting mechanism to address the economic problems of the
VCG mechanism. Our main contributions are summarized as
follows.

1) We model the auction in a graph and propose a new
method to solve the winner determination problem, which
has a better complexity of O(|N | log |N |) than the previ-
ous method [5] (|N | is the number of users).

2) We design the core-selecting mechanism for crowdsens-
ing market and demonstrate that this mechanism satisfies
four desirable properties: RTW feasibility, efficiency, in-
dividual rationality, and false-name-proofness.

3) We adopt a quadratic payment rule to minimize the
incentives of users to bid dishonestly and propose CCG-
TWC algorithm to calculate the payment result efficiently.

4) Finally, we extensively evaluate the performance of our
mechanism based on both real trace and randomly gener-
ated users. The results show that our mechanism is frugal
and practical.

The rest of this paper is organized as follows. We present
the related work in Section II. In Section III, we introduce
the preliminary knowledge including the VCG mechanism,
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and demonstrate our new method for the winner determina-
tion problem. In Section IV, we propose the core-selecting
mechanism for time window coverage crowdsensing tasks and
offer theoretical results. Section V presents the VCG-nearest
payment rule and the proposed CCG-TWC algorithm to com-
pute the payment result. In Section VI, the simulation results
and performance analysis are given. Finally, we conclude this
paper in Section VII.

II. RELATED WORK

The unique auction mechanism that ensures both efficiency
and truthfulness is the well-known VCG type of mechanisms
due to Vickrey [6], Clarke[7] and Groves[8]. However, the
VCG mechanism is rarely applied in practice directly, due
to its low revenue [9] and vulnerability to false-name bids
[10]. Core-selecting mechanism, originally proposed and de-
veloped by Day[11, 12, 13] has attracted substantial attention
in economics as a more robust and profitable alternative to
the VCG mechanism. It is widely used in auctions such as
spectrum auctions [14, 15], TV advertising auctions [16] and
electricity markets [17]. In this paper, we convert the core-
selecting crowdsensing mechanism into a form of path auction,
which is also related to the researches of core-selecting path
auction [18, 19, 20].

Mobile crowdsensing (MCS) provides an efficient method
to collect the sensing data [2, 21]. The time window coverage
tasks in mobile crowdsensing were first studied by Xu [5], Xu
modeled this problem as a reverse auction and proposed the
truthful mechanisms for time window coverage tasks. Then,
they proposed BFF-STI mechanism and FIMI mechanism to
ensure budget feasibility and frugality, respectively [22, 23].
However, they relaxed the guarantee of efficiency and didn’t
consider the false-name manipulation, which is different from
our mechanism.

Previous works also studied the false-name-proof mech-
anisms for MCS system [24, 25, 26, 27]. Lin studied the
auction-based incentive mechanisms for crowdsensing and
proposed the SPIM-S and SPIM-M mechanism which satisfy
individual rationality, truthfulness, and sybil-proofness[24].
They also studied sybil-proof online incentive crowdsens-
ing mechanisms and proposed SOS and SOM mechanisms
[25]. Jiang considered time-sensitive crowdsensing tasks and
proposed the sybil-proof TSSP-M and TSSP-S mechanisms
[26]. However, they all relax the guarantee of maximum
social welfare, which is different from our mechanism. Zhang
proposed a sybil-proof mechanism to encourage users to both
devote efforts to complete the task and refer other users to
join into participation [27].

III. PROBLEM FORMULATION AND PRELIMINARY
KNOWLEDGE

We consider a mobile crowdsensing system consisting of a
platform P and a set of smartphone users N = {1,2, ...,n}.
Denote the total set by N , where N = P ∪ N . The platform
publicizes a required time window (RTW) W = [TS,TE ],

where TS and TE are the start time and the end time, respec-
tively. The platform requests the sensing data in the period
from Ts to Te. We set a time unit as the minimum sensing
time and consider each point-in-time as the number of time
unit from the start time. The part less than one unit will be
removed for each user. Denote the length of RTW, i.e., the
number of time unit, as |W|.

Each user i reports a bid Bi = ([si, ei], bi), where [si, ei] is
the user time window (UTW) within which user i can perform.
The start time si and the end time ei can be any point-in-time.
However, any si < Ts or ei > Te cannot bring extra benefit the
platform, thus we don’t consider the time outside the RTW
[Ts,Te]. bi is the claimed cost that user i wants to charge for
performing [si, ei]. Each UTW [si, ei] is associated with a real
cost ci and ci is only known by user i herself.

The reverse auction of MCS includes two phases, allocation
phase and payment phase. In the allocation phase, also called
winner determination, the platform selects a subset of users
as winners and notifies them. Then the winners perform the
sensing tasks in their UTWs and send data back to the
platform. In the payment phase, each user i gets a payment
pi according to the payment rule that the platform formulates.
Thus, the result of a mechanism is the winner set Sw ⊂ N and
a payment vector P = (p1, p2, . . . , pn).

The utility of user i is defined through the following quasi-
linear function:

ui =
{

pi − ci i ∈ Sw
0 other (1)

The utility of the platform P is

uP = u(W) −
∑
i∈Sw

pi (2)

where u(W) is the value of the platform when it obtains all
data in the wholeW. u(W) is considered to be a large enough
constant in this paper. Social welfare is defined as the total
utility of all the players, including the platform and users.
Denoted by SW, the social welfare is computed by

SW = uP +
∑
i∈N

ui

= u(W) −
∑
i∈Sw

ci
(3)

According to Eq. (3), to get the maximum social welfare,
the mechanism must select the optimal user group with the
minimum cost. The cost minimizing user selection (CMUS)
problem can then be formulated as

Sw = arg min
S⊂N

∑
i∈S

ci

s.t . W ⊆ ∪i∈S[si, ei]
(4)

The constraint in (4) means that all the chosen UTWs should
cover the RTW, i.e., the mechanism should assure that the
winners can perform all the sensing tasks from Ts to Te. To
avoid the monopoly, we assume that there are enough users
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and exclude the situation where only one bid hits the arbitrary
time unit in [Ts,Te] to avoid the monopoly.

In the crowdsensing market, users are selfish individuals and
may lie about their costs or UTWs. In this paper, we assume
that the platform can verify the veracity of the sensing data in
the UTWs by using trusted time stamping such as Public Key
Infrastructure Time-Stamp Protocol (TSP). This means users
can’t lie about the time windows.

The platform could only get each user’s bid price bi instead
of the real cost ci , thus we assume that the mechanism regards
the users’ bids as their costs. As a whole, we are interested
in designing auction mechanism satisfying the following five
desirable properties.
• RTW Feasibility. A mechanism M is RTW feasible if

the UTWs of winners together can cover the whole RTW.
• Efficiency. A mechanism M is efficient if this mecha-

nism achieves the maximum social welfare, i.e., the mech-
anism should select the optimal user group according to
the bid profile.

• Individual Rationality. A mechanism M is individual
rational if each user will have a non-negative utility
according to her bid, i.e., pi ≥ bi,∀i ∈ N .

• Truthfulness. A mechanismM is truthful if no user can
improve her utility by submitting a fake bidding price, no
matter what others submit.

• False-name-proofness. A mechanism M is false-name-
proof if each user cannot get more profit by creating
fake names and submitting multiple bids under these
names[28]. With the development of the internet, false-
name bidding is easy to implement in a crowdsensing
market, which may lead to serious consequences. Thus it
is an essential property for the crowdsensing mechanism.

However, it is impossible to design a mechanism satisfying
all the above properties, since VCG mechanism is the unique
mechanism satisfying the first four properties, but it is not
false-name-proof and may cause a large overpayment for the
platform. We will state the problem of VCG later. In the next
section, we first solve the CMUS problem by transforming
it into the shortest path problem, which could be solved in
polynomial time.

A. Winner determination algorithm

According to the RTW and UTWs, we create a directed
weighted interval graph GI = (VI ,EI ,WI ) through the follow-
ing two steps:

1) For each user’s bid ([si, ei], bi), add a directed edge
(va, vb) with the weight of bi in GI , where va = si, vb =
ei .

2) Sort the vertices in ascending order as v0, v1, ..., vk . For
each i ∈ [1, k], add a directed edge (vi, vi−1) with the
weight of 0.

These edges added in the second step represent the dummy
users. Denote the set of dummy users by S0. Each dummy
user’s payment and cost are assigned as zero, that is

pi = ci = 0 ∀i ∈ S0 (5)

Fig. 1. The process of transformation. Top: original crowdsensing time
windows. Bottom: The corresponding graph GI .

Fig. 1 is an example for the transformation. The top in Fig. 1
demonstrates the UTW and RTW [Ts,Te] by the straight lines.
According to this example, we could create the graph GI as
the bottom of Fig. 1, the black arrows represent the UTWs
of mobile users, and the red arrows represent the UTWs of
dummy users.

After creating the graph GI , we could get the following
theorem.

Theorem 1: The optimal solution to CMUS problem is just
the non-dummy users in the shortest path from v0 to vk in GI .

Proof 1: We sort the users in the optimal solution as
1,2, ...,m, where s1 ≤ s2 ≤ · · · ≤ sm. Then we prove Theorem
1 from two steps. The first is proving the optimal solution
could be transformed into a path from v0 to vk in GI and the
second is proving this path is the shortest path.

Firstly, we have the following inequality1

si+1 ≤ ei ≤ si+2,∀i ∈ [1,m − 1] (6)

This could be proved by contradiction as follows.
Assume that ei < si+1, then there must exist a UTW [sj, ej]

where sj ≤ si, ej ≥ ei , otherwise the time window [ei, si+1]
can not be covered. Thus, the RTW [si, ei] is redundant, which
means this solution is not optimal. By this contradiction, the
left part of inequality (6) is proved.

For the right part, we know em−1 ≤ sm+1 is true. Assuming
that ei > si+2 for each i ∈ [1,m − 2], then in chronological
order, the UTWs of users i, i + 1, i + 2 could be represented as

si · · · si+1 · · · si+2 · · · ei · · · (ei+1) · · · ei+2 · · · (ei+1)

We know that the UTW [si+2, ei+2] is redundant if ei+2 is
in the left of ei , thus the order of the three UTWs is right.
But the position of ei+1 is uncertain, this could be considered
according to the relationship with ei+2 into two cases:
• Case 1: If ei+1 < ei+2, we can see that the UTW
[si+1, ei+1] would be covered by the other two UTWs,
thus [si+1, ei+1] is redundant.

1Let sm+1 = Te
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• Case 2: If ei+1 ≥ ei+2, the UTW [si+2, ei+2] would be
redundant because it is covered by [si+1, ei+1].

Overall, the solution is not optimal, either. By this contradic-
tion, the left part is proved so that inequality (6) is established.
Then, we could construct a path in GI as

s1 → e1 → s2 → e2, . . . , sm → em

The edge si → ei represents the UTW [si, ei] of user i.
The edge ei → si+1 represents the subpath from ei to si+1.
Since ei ≥ si+1, these subpaths consists of the dummy users
when ei < si+1 and doesn’t include any users when ei = si+1.
According to inequality (6), these subpaths don’t have overlap
between them. Therefore, this path transformed by the optimal
solution is one existent path from v0 to vk in GI . Besides, the
length of this path is just the total cost of the solution.

Also, we next prove that this path is the shortest path by
contradiction. Assuming that it isn’t the shortest, we denote
the shortest path by SP. Then we sort the non-dummy users
as 1,2, ...,m′, in the order that SP passes their corresponding
edges. Thus SP becomes

s1 → e1 → s2 → e2, . . . , sm′ → em′

Similarly, the edge si → ei represents user i’s UTW. The
edge ei → si+1 represents the subpath from ei to si+1 or
empty. There exist only the dummy edges in these subpaths,
so we have ei ≥ si+1. Due to that s1 = Ts, em′ = Te, the
users 1,2, ...,m′ could form a feasible user group for the
CMUS problem, whose cost is lower than the original optimal
solution. This produces a contradiction, thus Theorem 1 is true.

For example in Fig. 1, the solution is users 1,2,3, which is
corresponding to the path v1 → v3 → v2 → v4 → v5 in the
graph GI .

In this paper, we compute the shortest path by Dijkstra’s
algorithm, whose time complexity is O(|EI | + |VI | log |VI |) in
graph GI . We can see that |VI | ≤ 2|N |,
|EI | ≤ 2|N | − 1, so the time complexity of our method is
O(|N | log |N |) in the worst case. Thus, compared with the
complexity of O(|N |2) in [23], our new proposed method
would be better to handle the large-scale crowdsensing tasks.

Given this method, the maximum social welfare in the
auction could be computed by

SW(N) = u(W) − d(v0, vk,GI ) (7)

where d(v0, vk,GI ) is the cost of the shortest path from v0 to
vk in GI . Note that d(v0, vk,GI ) = ∞ if there exists no path
from v0 to vk .

B. VCG mechanism

We state the famous VCG mechanism briefly in this section.
VCG mechanism selects the optimal user group as the winner
set such that it is efficient. For each user i in the winner set,
its utility is given by

uVCG
i = SW(N) − SW(N − i) (8)

where SW(N−i) is the social welfare if user i’s bid is ignored.

Fig. 2. False-name manipulation in VCG mechanism. Top: the truthful bid
profile. Bottom: the false-name bid profile.

According to Eq. (7), the VCG payment to winner i is

pVCG
i = −d(v0, vk,GI ) + d(v0, vk,GI − i) + bi (9)

where GI−i stands for the graph that removes the edge of user
i in GI . Compared with GI , GI−i lacks one edge, thus we have
d(v0, vk,GI ) ≤ d(v0, vk,GI − i). According to Eq. (9), pVCG

i ≥

bi such that VCG mechanism satisfies individual rationality.
The VCG mechanism is also dominant strategy truthful. Note
that in Eq. (9), i’s bid bi also appears in d(v0, vk,GI ), so it
can be cancelled with the last term. The VCG payment is
thus not dependent on user i’s bid price bi . Therefore, it is a
weakly dominant strategy for users to report their true costs:
∀i ∈ N, bi = ci .

VCG mechanism is the unique mechanism that guarantees
efficiency, individual rationality, and truthfulness. However, it
is vulnerable to false-name manipulation, which may cause a
large overpayment for the platform.

C. Problems with VCG mechanism

We demonstrate the problems of VCG mechanism through
an example as Fig. 2. At the top of Fig. 2, there are three users
1,2,3 with the cost of 10,1,2. The selected winners are users
2 and 3, and their VCG payments are 8 and 9, respectively. If
user 3 bids with two different fake names 3,4, like the bottom
of Fig. 2, the total payment for user 3 will be p′3+p′4 = 7+7 =
14 with the same sensing task. Thus, user 3 obtains more profit
by using false names, which forms a false-name manipulation.

Besides, the VCG mechanism often leads to a high overpay-
ment. At the top of Fig. 2, the minimum cost is 4 but the final
VCG payment is 17, which brings a high overpayment for
the platform. These problems make VCG mechanism difficult
to apply in the crowdsensing market, thus we introduce the
core-selecting mechanism to address these problems.
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IV. CORE-SELECTING MECHANISM IN THE MOBILE
CROWDSENSING MARKET

In this section, we propose the core-selecting mechanism
for the time window coverage crowdsensing tasks. Firstly, we
model the reverse auction as a cooperative game (N,SW)
and use the core as our solution concept.
N = P ∪ N represents all the players in this game. The

dummy users are involved by default. For an arbitrary coalition
L ⊂ N , its coalition value is defined as the maximum social
welfare in the auction held by players in L. It is computed by

SW(L) =
{

u(W) − d(v0, vk,GL
I ) if P ∈ L

0 if P < L (10)

where GL
I is the graph created by L. Note that if a coalition

does not include the platform, then its coalition value equals
0. We can now define the concept of the core. An outcome is
in the core when the total utility of N equals SW(N), and
the total utility to every coalition L is at least SW(L).

Definition 1 (Core outcome): A core outcome in the auction
is an allocation and payment profile such that the utility profile
U = {u1, . . . ,un} satisfies

(C0) :
∑
i∈N

ui = SW(N) (11)

(C1) :
∑
i∈L

ui ≥ SW(L) (12)

Given a bid profile B, we let core(B) be the total set of
the core outcomes, which is our solution concept. It is worth
noting that in our setting, the first-price (pay what you bid)
payment vector is always a core outcome, and thus the core
is always non-empty. Then we can define the core-selecting
mechanism.

Definition 2 (Core-selecting mechanism): In the crowdsens-
ing market, a mechanism is core-selecting if (1) it selects the
optimal user group; and (2) the payment vector P is computed
so that P ∈ core(B).

A. Theoretical results

According to the above definition, we can see that core-
selecting mechanism guarantees RTW feasibility and effi-
ciency. Let L = {i} in constraint (C1), and we have

ui ≥ 0 ∀i ∈ N (13)

This constraint means the core-selecting mechanism also
satisfies individual rationality. Next, we introduce two the-
orems for our mechanism. The first is that core-selecting
mechanism is always more frugal than VCG mechanism, that
is, core payments are never higher than VCG payments.

Theorem 2: In the crowdsensing market, the payment to user
i in core-selecting mechanism is no more than that in VCG
mechanism. That is, if pi ∈ core(B), then we have

pi ≤ pVCG
i ∀i ∈ N

Proof 2: By subtracting the constraint (C1) from (C0), we
could get, ∑

i∈N

ui −
∑
i∈L

ui ≤ SW(N) − SW(L) (14)

Let L = N − i, and we have

ui ≤ SW(N) − SW(N − i) (15)

Note that ui = pi − bi , thus we have pi ≤ pVCG
i .

Therefore, the revenue for the platform is no less than VCG
mechanism with the same bid profile. The second theorem
is that core-selecting mechanism is robust against false-name
manipulation.

Theorem 3: In the core-selecting mechanism for the crowd-
sensing market, no user can earn more than her VCG utility
by generating false-name bids.

Proof 3: Let S ⊂ N be a coalition of users, they might be the
false names generated by one user. The condition requires that
these players can not obtain more utility than if they were to
submit their merged bid in the VCG mechanism, which means∑

i∈S ui ≤ uVCG
S

, ∀S ⊂ N .
Note that the VCG utility of S is

uVCG
S = SW(N) − SW(N − S) (16)

Then this condition becomes∑
i∈S

ui ≤ SW(N) − SW(N − S) (17)

Since the core-selecting mechanism is efficient, we have
SW(N) =

∑
i∈N ui . Then, Eq. (17) is equivalent to∑

i∈N−S

ui ≥ SW(N − S) (18)

Eq. (18) is just a constraint of (C1) where L = N − S.
Thus, the condition is satisfied for arbitrary coalition S in core-
selecting mechanism.

Therefore, core-selecting mechanism is false-name-proof.
So far we have assumed that bids are truthful, then we will
study how to design the payment rule to maximize users’
intention of truthful bidding in Section V.

V. PAYMENT RULE

Note that there may be many feasible payment vectors in
the type of core-selecting mechanism, thus In this section we
state how to choose a specific payment vector to make up for
the untruthfulness.

A. VCG-nearest payment rule

Firstly, to evaluate users’ incentive to deviate from truthful
reporting, we introduce the definition of the incentive profile
for a core-selecting mechanism.

Definition 3: The incentive profile for a core-selecting
auction mechanism at bid profile B is {θi(B)} where θi(B) is
i’s maximum utility gain by deviating from truthful reporting.

The idea is to minimize these incentives to deviate from
truthful bidding, subject to the core-selecting rule. We use
a Pareto-like criterion, that is, a core-selecting mechanism
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M provides optimal incentives, if there is no core-selecting
mechanism M ′ such that for every user i, θM

′

i (B) ≤ θMi (B)
with strict inequality for some users.

Day and Milgrom [11] proved that a core-selecting mech-
anism provides optimal incentives if and only if it chooses a
user-Pareto-optimal outcome.

Definition 4 (User-Pareto-optimal core outcome): A core
outcome is user-Pareto-optimal if there is no other core
outcome weakly preferred by every user in the winner set.

According to the definition of user-Pareto-optimality, we
have the following theorem.

Theorem 4: A core outcome is user-Pareto-optimal if it
produces the maximum total payment in the core.

Proof 4: When the total payment is the maximum in the
core, there exists no core outcome that could improve one’s
utility without hurting others’ utilities in the winner set. Thus,
it is a user-Pareto-optimal core outcome.

Therefore, we use the maximum total payment as the final
payment to ensure users’ incentives. However, there is still
a lack of precision because these points are not unique. A
simple method is that among all the core points with maximum
total payment, selecting the one that minimizes the distance
from one reference point. In this paper, we adopt the VCG-
nearest rule, which minimizes the Euclidean distance from
VCG payment point [13]. For a payment vector P, denote
the distance from VCG payment by D(P,PVCG), which is

D(P,PVCG) =
∑
i∈Sw

(pi − pVCG
i )2 (19)

Therefore, the final result is to compute the VCG-nearest
payment vector based on the maximum total payment. We will
apply the method of core constraint generation (CCG) to solve
this problem in Section V-B.

B. Computation of VCG-neatest payment

After solving the winner determination problem, the winner
set Sw is fixed. Then we have to consider the constraints in
(C1) to get the final payment result. However, in an auction
with n users, the number of constraints in (C1) is 2n+1 − 1,
which is insufferable for the platform.

Thus, we reorganize the core constraint set format at first.
1) Core constraint set formulation: Recall the constraint in
(C1), ∑

i∈L

ui ≥ SW(L) (20)

For the case P < L, the constraint becomes∑
i∈L

ui ≥ 0 (21)

This constraint could be derived by the individual rational
constraint pi ≥ bi . Thus, we only need to consider the remain-
ing constraints where P ∈ L. According to the definition in
Eq. (10), these constraints become∑

i∈L

ui ≥ u(W) − d(v0, vk,GL
I ) (22)

Notice that ui = 0,∀i < Sw ∪ {P}, so we have∑
i∈L

ui = uP +
∑

i∈L∩Sw

ui

= u(W) −
∑
i∈Sw

pi +
∑

i∈L∩Sw

(pi − bi)

= u(W) −
∑

i∈Sw\L

pi +
∑

i∈L∩Sw

bi

(23)

Bring Eq. (23) into Eq. (22), we obtain∑
i∈Sw\L

pi ≤ d(v0, vk,GL
I ) −

∑
i∈L∩Sw

bi (24)

Eq. (24) is the constraint format we would use to compute
the final VCG-nearest payment. In this format, the left part
is the payment variable for the final result, and the right is
the fixed quantities. Note that L is an arbitrary nonempty
subset satisfying that L ⊂ N and P ∈ L, thus the number
of constraints is 2 |N | − 1.

2) CCG-TWC algorithm: Setting βL = d(v0, vk,GL
I ) −∑

i∈L∩Sw
bi , and denoting the vector of all βL values as β,

we can reformulate Eq. (24) as

pA ≤ β

where A is a |Sw | × (2 |N | − 1) matrix. In each column of
A, the i-th entry equals 0 if winner i is in set L and equals
1 otherwise. p is the payment vector for the winners. Then
we can compute the maximum total payment by solving the
following linear program:

LP : α = max p × 1
s.t . pA ≤ β

p ≥ b

(25)

where b is the bid vector corresponding to the payment
vector p. After getting the maximum total payment α, we
need to minimize the Euclidean distance from the VCG point
subjecting to the total payment of α. Thus, we can formulate
a quadratic program to determine the final payment vector p:

QP : min(p − pVCG)(p − pVCG)T

s.t . pA ≤ β

p ≥ b

p × 1 = α

(26)

Solving the QP (26) and we could get the final VCG-nearest
payment vector. Throughout the optimization problem, the
number of the inequality constraints is 2 |N | + |Sw | −1. Among
them, the individual rational constraints p ≥ b are easy to
obtain. For the remaining constraints in the format (24), each
requires to run the shortest path algorithm once to obtain the
value of d(v0, vk,GL

I ). Thus, the shortest path algorithm needs
to be run 2 |N | − 1 times, which is formidable in practice.

A core-constraint generation (CCG) procedure can be em-
ployed to reduce the complexity. Instead of enumerating all
the possibilities of non-empty coalitions L, it finds blocking
coalitions effectively by reducing payments from the VCG
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payment point. This iterative algorithm actually continues to
reduce the payments of the winners, until there is no blocking
coalition, reaching a core outcome. Each blocking coalition
is corresponding to a constraint in (24). Finally, after adding
all the necessary constraints, there is no blocking coalition,
and the generated payment vector satisfies the total payment
maximization rule and hence the VCG-nearest rule.

Algorithm 1 Core Constraint Generation for the time
window coverage crowdsensing tasks (CCG-TWC)
Require: Directed graph GI = (VI ,EI ,WI ); source vertex v0;

target vertex vk ; the winner set Sw .
Ensure: VCG-nearest payment vector

# 1. Solve the LP (25)
1: t ← 0
2: Compute pVCG

i , pti ← pVCG
i

3: CCG-SET ← {pi ≤ pti, pi ≥ bi |i ∈ Sw}
# CCG-SET is the constraint set for CCG-TWC.

4: ∀i ∈ Sw,wi ← pti , thus the graph Gt
I is created.

5: Compute the winner set St
w in Gt

I by Dijkstra’s algorithm.
6: while

∑
i∈Sw

pti >
∑

i∈St
w
wi do

7: t ← t + 1
8: z ← Sw ∩ St

w

9: CCG-SET ← CCG-SET ∪{
∑

i∈Sw\z pi ≤
∑

i∈St
w\z

wi}

10: Solve the LP and get payment Pt = (pt1, p
t
2, . . . , p

t
m)

11: ∀i ∈ Sw , wi ← pti , compute the new winner set St
w .

12: α =
∑

i∈Sw
pi

# 2. Solve the QP (26)
13: t ← 0
14: CCG-SET ← CCG-SET ∪{

∑
i∈Sw

pi = α}
15: Solve the QP and get a payment Pt = (pt1, p

t
2, . . . , p

t
m).

16: ∀i ∈ Sw,wi ← pti , compute the new winner set St
w .

17: while
∑

i∈Sw
pti >

∑
i∈St

w
wi do

18: t ← t + 1
19: z ← Sw ∩ St

w

20: CCG-SET ← CCG-SET ∪{
∑

i∈Sw\z pi ≤
∑

i∈St
w\z

wi}

21: Solve the QP and get payment Pt = (pt1, p
t
2, . . . , p

t
m)

22: ∀i ∈ Sw , wi ← pti , compute the new winner set St
w .

23: return (pt1, p
t
2, . . . , p

t
m)

Based on this method, we propose a efficient two-stage
algorithm called CCG-TWC to compute the VCG-nearest
payment vector. The pseudo code is shown in Alg. 1. The
first stage is solving the LP (25) to get the maximum total
payment α, which is corresponding to step 1-12. The second
stage is solving the QP (26) to get the final vector, which is
step 13-23.

VI. SIMULATION RESULTS

We conduct thorough simulations to investigate the perfor-
mance of the core-selecting mechanism. We first evaluate our
mechanism based on the dataset of real-world traces. Then
the simulations based on the randomly generated users are
conducted in order to reveal the impacts of the key parameters.
We measure the number of winners, the total payment, and

Fig. 3. Taxis involved at different end time of RTWs.

Fig. 4. Number of winners involved at different end time of RTWs.

the running time in each instance. The bid price is uniformly
distributed in [1,100] in our simulations. The experiments are
run on a Mac os machine with Intel Core i5-5350U CPU and
8 GB memory. All the results are averaged over 1,000 runs.

A. Evaluation based on real traces

We use the real mobility traces of 370 taxis that report
their positions every 15 seconds around the city of Rome
from 2014-02-01 to 2014-03-02[29]. In this paper, we use
the traces on 2014-02-01. We consider that the time window
coverage tasks are launched in some specific geographical
areas. We choose two places, Quirinal Palace (Quirinal) and
the University of Arkansas Rome Center (UARC), as the
centers of the specific circular areas with a radius of 1 km. We
assume that a smartphone is carried by the passenger or the
driver of each taxi. For each circular area, we fix the maximum
RTW and measure the performance with different end times.
The RTWs of Quirinal area and UARC area are [09:00:00,
12:20:00] and [20:00:00, 23:20:00], respectively, both with
length of 12,000 seconds. The time unit is set as 10 seconds.
The users of each area are taxis who are in this area during the
RTW and we select the maximum length time interval in the
RTW of each taxi as the UTW. The number of taxis involved
with different RTWs is shown in Fig. 3.

The average number of winners with different RTWs is
shown in Fig. 4, we can see that the number of winning taxis
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Fig. 5. Performance of Core-selecting mechanism with different end time of RTWs. From left to right: (1) Total payment in Quirinal. (2) Running time in
Quirinal. (3) Total payment in UARC. (4) Running time in UARC.

increases with the increase of |W| because the platform has
to recruit more users to accomplish the sensing tasks in large
RTWs.

B. Performance based on real traces

We first study the payment performance of our mechanism.
The result is shown in Fig. 5. We can see that the total
payment increases when |W| goes up in Quirinal and UARC.
The total payment in core-selecting mechanism is always
lower than that in VCG mechanism in the two areas and the
gap between them increases as the RTW goes up. We also
compute the benchmark of the CMUS problem for each RTW.
The performance measure we used is the overpayment factor,
which is defined as the ratio between its total payment and
the true cost in the benchmark:

OF =

∑
i∈Sw

pi∑
i∈Sw

bi
(27)

The overpayment factors of core-selecting mechanism are
1.93 and 1.79 in Quirinal area and UARC area on average,
compared with 2.15 and 2.01 for VCG mechanism on the same
true costs. Thus, core-selecting mechanism is more frugal than
VCG mechanism.

For the time performance, as shown in Fig. 5, the running
time of CCG-TWC algorithm increases when |W| goes up
because the running time depends on the number of winners.
In general, The average running time of CCG-TWC is 15.0 ms
and 30.1 ms in Quirinal area and UARC area, respectively. Its
running time is bounded by 20.2 ms and 56.4 ms respectively
when |W| = 12,000s. In contrast, the running time of
benchmark and VCG mechanism nearly remain zero, while
VCG running time may increase slightly from zero to 5.6 ms in
UARC. Their running times are negligible compared with that
of CCG. However, the running time of CCG-TWC algorithm
is still in an acceptable range for the real applications.

C. Impact of the key parameters

There are three common key parameters: the number of
users n, the length of RTW |W|, and the upper limit ratio of

UTW δ. For our simulations, the UTW length of each bid is
uniformly distributed in the interval [1, δ |W|]. The UTWs are
placed in the whole W with uniform distribution. We set n =
1000, |W| = 100, δ = 0.2 as the default values and vary them
for exploring the impacts of these parameters. The impact of
|W| has been investigated on the real traces. Thus we measure
the impacts of other key parameters here.

1) Impact of the upper limit ratio of UTW: The length
of UTWs depicts the interest and suitability of users for
participating in mobile crowdsensing. We set the UTW length
of each bid in [1, δ |W|] with uniform distribution, and then
vary δ from 0.1 to 0.28. As shown in the top of Fig.6, the
number of winners and the total payment decrease dramat-
ically with increasing δ. This is because the platform can
select fewer users to perform the tasks when each UTW could
be longer. The total payment in core-selecting mechanism is
lower than that of VCG auction in all cases. Besides, the
overpayment ratios of core-selecting mechanism are 1.70 on
average, compared with 1.85 of VCG mechanism. This verifies
the frugality of core-selecting mechanism. The running time
of CCG-TWC decreases sharply with the increasing δ, from
170.6 ms to 53.4 ms, with an average of 87.7 ms. In contrast,
the running time of VCG decreases slightly from 25.1 ms to
13.4 ms, with an average of 17.6 ms. The benchmark for the
winner determination algorithm is only 2.5 ms on average.

2) Impact of the number of users: To investigate the scal-
ability of our mechanism, we vary the number of users from
1,000 to 2,000. The bottom of Fig.6 shows the impact of the
number of users on the performance of core-selecting mecha-
nism. The number of winners decreases slightly when users go
up, from 8.97 to 8.55. We can see that the total payment goes
down with increasing number of users since the platform can
find more cheap users in the more competitive market. The
total payment of core-selecting mechanism decreases sharply,
from 58.44 to 31.23. The payment of VCG mechanism also
drops from 63.22 to 33.77. Through all the cases, the total
payment of core-selecting mechanism is always lower than
that of VCG mechanism, and the overpayment ratios of core-
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Fig. 6. Top: Impact of the upper limit ratio of user time window δ. (a) Winners. (b) Total payment. (c) Running time. Bottom: Impact of the number of
users n. (d) Winners. (e) Total payment. (f) Running time.

selecting and VCG are 1.66 and 1.80 on average. For the
time performance, all the running times remain steady with
the increasing user scale. The running time of CCG-TWC
algorithm is 65.4 ms on average, compared with 20.5 ms
and 3.1 ms for VCG mechanism and the benchmark, respec-
tively. Although the complexity of core-selecting mechanism
is higher, its running time is the same order of magnitude as
VCG in this evaluation.

Overall, we can see that core-selecting mechanism is scal-
able since it could achieve higher revenue and nearly constant
running time with the increasing users. Meanwhile, it is false-
name-proof so the platform could protect her revenue from the
false-name bids, which VCG mechanism can not achieve.

VII. CONCLUSION

In this paper, we investigate the false-name-proof mecha-
nism for time window coverage tasks in mobile crowdsensing.
We model the mobile crowdsensing system as a reverse auction
and formulate the CMUS problem. Then, we propose a new
algorithm to solve the CMUS problem, which has a better
complexity. After that, we apply the core-selecting mechanism
to time window coverage tasks. Through rigorous theoreti-
cal analyses, we demonstrate that the proposed mechanism
achieves RTW feasibility, efficiency, individual rationality,
false-name-proofness. Furthermore, we adopt a VCG-nearest
payment rule to minimize the incentive of untruthfulness.
Finally, we design the CCG-TWC algorithm to solve the
computation problem. The results of extensive simulation
show that our mechanism can reduce the total payment to
89% of that in VCG mechanism on average, and it is scalable
by using CCG-TWC algorithm.

In future work, we will consider the more complex sce-
narios, where each user’s bid includes multiple time windows.
On the other hand, we will also study the relationship between
constraints to accelerate the CCG-TWC algorithm.
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